
Multi-Level Ray Tracing Algorithm

Alexander Reshetov Alexei Soupikov Jim Hurley
Intel Corporation

Abstract

We propose new approaches to ray tracing that greatly reduce the
required number of operations while strictly preserving the
geometrical correctness of the solution. A hierarchical “beam”
structure serves as a proxy for a collection of rays. It is tested
against a kd-tree representing the overall scene in order to discard
from consideration the sub-set of the kd-tree (and hence the
scene) that is guaranteed not to intersect with any possible ray
inside the beam. This allows for all the rays inside the beam to
start traversing the tree from some node deep inside thus
eliminating unnecessary operations. The original beam can be
further sub-divided, and we can either continue looking for new
optimal entry points for the sub-beams, or we can decompose the
beam into individual rays. This is a hierarchical process that can
be adapted to the geometrical complexity of a particular view
direction allowing for efficient geometric anti-aliasing. By
amortizing the cost of partially traversing the tree for all the rays
in a beam, up to an order of magnitude performance improvement
can be achieved enabling interactivity for complex scenes on
ordinary desktop machines.
CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Ray Tracing, Global Illumination, Beam
Tracing, Geometric Anti-Aliasing.
Keywords: ray-tracing, frustum occlusion culling, anti-aliasing

1 Introduction
A renewed interest in Ray Tracing (RT) algorithms is being
fueled by the relentless progress of Moore’s law in terms of raw
compute power and various algorithmic discoveries resulting in
significant performance improvements. This makes real-time Ray
Tracing and Global Illumination (GI) attractive for
implementation on desktop machines. Some of these new
discoveries are summarized by Wald et al. [2003]. Table 1
provides comparison results for our implementation and those
described by Wald. We were able to improve performance further
by up to an order of magnitude. This is achieved by amortizing
per-beam operations which would otherwise be performed for
each ray in a group.

e-mail: {Alexander.Reshetov, Alexei.Soupikov,
Jim.Hurley}@intel.com

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or direct commercial advantage and that copies
show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or
permissions@acm.org.

In this paper, we focus on the most fundamental task in ray
tracing, namely, finding the intersection of one or more rays with
a given geometry. We consider reducing the average number of
operations per ray as the most objective metric for comparing
different algorithms. Generally speaking, there is no one
guaranteed best ray tracing algorithm as performance depends on
many factors such as: the overall scene complexity, the current
view of the scene, and the characteristics of the host platform.
Many of the techniques we use have been known for some time,
although not specifically applied to the problem of efficient ray
tracing. For example, a modified view frustum culling algorithm
is used to reduce redundant operations for big groups of rays. In
essence, we’re building on top of the work of Heckbert and
Hanrahan [1984], Teller and Alex [1998], Assarsson and Möller
[2000], Kay and Kajiya [1986], and others. Another motivating
factor is to address the issue of geometrical aliasing which is
especially pronounced at interactive rates. One way to improve
the quality of the resulting image is to cast multiple rays through
each pixel. We propose a mechanism for dynamically measuring
the geometrical complexity for a given view direction, which can
be used for budgeting rays more cost-effectively.

FFrraammeerraattee ((FFPPSS)) @@
11002244xx11002244 rreessoolluuttiioonn

sscceennee
ooff ttrriiaanngglleess
aanndd sshhaaddeerr ((++//--))

OOppeennRRTT @@
22..55 GGHHzz PP44

11 tthhrreeaadd

MMLLRRTTAA @@
22..44 GGHHzz PP44

11 tthhrreeaadd

MMLLRRTTAA @@
33..22 GGHHzz PP44

wwiitthh HHTT
22 tthhrreeaaddss

– shader 7.1 70.2 109.8 Erw6
804

+ shader 2.3 37.8 50.7

– shader 4.55 11.2 19.5 Confe-
rence
274K

+ shader 1.93 9.5 15.6

– shader 4.12 21.1 35.5 Soda
Hall
2195K

+ shader 1.8 15.3 24.1

Table 1: Framerate comparison results for 3 scenes. OpenRT data
is taken from Wald et al. [2003]. Two sets of data are provided:
one for a null shader, and the other for a simple shader (equivalent
to placing a point light at the camera position).

We start by giving a brief overview of related work in section 2.
Section 3 introduces the basic concepts which will be used
throughout this article. By following relevant prior work, these
concepts will be described and then refined and adapted for our
approach. Then we describe the complete multi-level ray tracing
pipeline in section 4 and discuss results in section 5. We conclude
with some considerations for further research ideas in section 6,
which will also describe limitations of the proposed method.

1.1 MLRTA Overview
The central contribution of this paper is a new robust approach to
high performance ray-tracing which is achieved without any

approximations or geometric simplifications. Instead of looking
for ray/geometry intersections, we effectively exclude certain
objects from consideration for any given group of rays. This is
accomplished by providing a separate entry point into the global
acceleration structure (kd-tree) for each group of rays. Instead of
traversing each constituent ray from the top of the tree, we start at
the group’s entry node inside the tree. This reduces the average
number of traversal steps by 2/3rds for typical scenes.
Further insight came from analyzing the frustum culling
algorithms used for axis-aligned bounded boxes (AABB) in the
context of traditional raster graphics. Here, simple tests are used
on AABB proxies for detailed geometries to purge objects which
do not intersect the frustum, effectively reducing the amount of
geometry submitted for rendering. These tests are designed to
quickly detect the majority of cases where objects do not intersect
with the view frustum. The objects can be trivially rejected if their
AABBs can be separated from the frustum by one of the
frustum’s planes. This works well in those cases where small
AABBs are culled by a relatively big frustum. A comparable
approach may be used in ray tracing, where the AABBs represent
the volumes associated within a kd-tree’s nodes, and the frustum
represents a beam of rays. Typically, this frustum will be much
smaller than most of the AABBs in the kd-tree. As a result, using
the trivial reject algorithm as described above would result in a
higher percentage of redundant potential accepts (cases where we
cannot trivially exclude the intersection for non-intersecting
objects). Conversely, for RT applications we propose reversing
the roles of the frustum and AABB by using the AABB faces as
separation planes during depth-first traversal of the kd-tree.
Furthermore, we recommend new approaches to the kd-tree
building process which make it more suitable for the Multi Level
Ray Tracing Algorithm (MLRTA) proposed herein. We also
introduce the new concept of an “empty occluder”, which is
basically a tagged empty box contained inside a watertight object.
We use such empty occluders to stop further traversal of beams
that completely intersect such occluders.
All these innovations together allow us to improve the
performance of the ray-tracing algorithm by up to an order of
magnitude compared with previous results in the literature. As an
added bonus, the MLRTA provides a natural mechanism for
measuring the geometric complexity of the portion of the scene
visible to a given group of rays, which enables geometric anti-
aliasing.

2 Related Work
A number of researchers have developed strategies for exploiting
coherence between spatially adjacent rays. We took inspiration
from the early work of Heckbert and Hanrahan [1984], in which
polygonal beams were used instead of rays to improve the anti-
aliasing properties of an image. The beam was annotated as it
intersected with objects in the scene so that the edges of these
interfering objects could be more effectively anti-aliased. Similar
goals were pursued by different researchers through the
introduction of cone tracing [Amanatides 1984], pencil tracing
[Shinya at el. 1984], and ray bounds [Ohta and Maekawa 1990].
In [Heckbert and Hanrahan 1984], the beams are persistent with
extra information accumulated during tracing to describe multiple
beam/object intersections. Later, researchers switched to splitting
beams whenever such intersections occurred. In [Ghazanfarpour
and Hasenfratz 1998], this happens when a beam intersects

multiple objects thus necessitating smaller sub-beams to precisely
anti-alias a polyhedral scene. In [Genetti et al. 1998], “pyramidal
rays” (pyrays) are split when any part of one intersects an object.
Arvo and Kirk [1987] use a volume in a 5D space to represent a
collection of rays (3D for origin and 2D for direction). The
original 5D volume is then dynamically subdivided into
hypercubes, each linked to a set of objects which are candidates
for intersection. In [Heckbert and Hanrahan 1984], the beam tree
which represents the surfaces intersected by the beam, is
computed in object space and then passed to a polygon renderer
for scan conversion. In [Teller and Alex 1998], frustum casting is
proposed which samples discretely in image space, but operates in
object space. In this algorithm, the frustum is recursively
subdivided, while object space is organized linearly with indices
identifying neighbors of a given current cell. In [Cho and Forsyth
1999], a visibility complex is incrementally constructed enabling
efficient ray/geometry queries.
In [Havran and Bittner 2000], Longest Common Traversal
Sequences are used to amortize common operations among
multiple rays. In [Dmitriev et al. 2004], pyramidal shafts are used
for the same purpose. This technique is also extended to
secondary and shadow rays. In both of these works the convex
hull of a group of rays is represented by a few boundary rays,
which are traversed through the scene. It is then assumed that all
interior rays will follow the same path. This is not always correct
and we will provide examples illustrating this point in section 3.3.
We believe that we have come up with the necessary
mathematical apparatus which is geometrically accurate and
achieves the same goals.
All these algorithms attempt to combine view-dependent culling
in object space with some distance-based visibility determination
in image space. This is generally achieved by the use of a
spatially distributed recursive construct which initially
encompasses multiple rays and is then progressively refined. We
use the same approach, the fundamental difference between our
method and these others is that we are not trying to find objects
that this construct intersects. Instead, we eliminate those objects
that do not intersect with the construct.
A different category of algorithms aims at minimizing the
required number of intersection tests by budgeting rays diligently,
sampling sparsely in areas of low geometric variation and super-
sampling for geometrically complex or perceptually important
parts of the image [Ramasubramanian et al. 1999]. Our approach
facilitates this type of optimization by providing a natural
measure of geometrical complexity for a specific viewpoint.

3 Basic Concepts

3.1 Acceleration Structures
To naively find an intersection of a ray with a scene, one could
test this ray against all objects in the scene for an intersection and
keep the one with the shortest distance from the ray origin. This
algorithm might have the lowest memory footprint, but its
execution time is prohibitive. A much better approach would be to
organize the scene into some sort of data structure (usually called
an “acceleration structure” – AS) and use this structure to zero in
on the area of interest in a hierarchical fashion. An AS works by
splitting 3D space into subsets containing a certain number of
primitive objects (triangles if no other primitives are used). In
addition to this spatial organization, specific traversal routines are
defined as well. These routines are used to quickly decide which

subsets to look into further for possible intersections. Different
traversal routines may coexist for the same AS, for example, one
for primary and another for shadow rays. One object may belong
to multiple subsets and some subsets may be empty. Various
types of ASs that lend themselves to different scene geometries
and/or computer architectures are well known and described in
the literature [Szirmay-Kalos et al. 2002]. In this work we use a
kd-tree data structure; a systematic analysis of the kd-tree
building algorithm was first given by Glassner [1984] and
followed by numerous publications, in particular by Havran
[2000].
The main operation in the kd-tree building process is to split an
axis-aligned bounding box into two (potentially unequal) boxes
by a plane orthogonal to one of the axes. The process is repeated
recursively until some termination criteria are met. The splitting
algorithm and termination criteria, in essence, define a particular
flavor of a kd-tree building algorithm. The split position is chosen
by minimizing a cost function over a set of candidate split
positions, such as the coordinates of vertices inside the cell and
the coordinates of triangle/cell intersections. Following
MacDonald and Booth [1990], we use a surface area-based cost
function which is computed by multiplying the area of the cell by
the number of objects intersecting with it. We have modified the
pure area-based approach to bias it in favor of creating large
empty cells and also 2D cells (cells with a zero extent along one
of the axes). The rationale for this adjustment is that a pure area-
based cost function underestimates the importance of placing such
cells closer to the top of the tree. This modification is based on
three simple rules applied sequentially:

 aa bb cc dd

o

 A B C D

nneeaarreesstt

cceellll ((CC00))
ffaarrtthheesstt

cceellll ((CC11))

δδ
χχ

ββ

αα

P0

1. We always create an empty cell if its volume with respect
to the original cell is greater than some threshold (10% in
our implementation).

2. If there is a possible split plane which is completely
covered by co-planar triangles, it will be selected and
these triangles will be included in the smaller sub-cell.
This heuristic sits well with the axis-aligned nature of kd-
trees.

3. In addition to termination criteria based solely on a cost
function (cost of splitting > cost of non-splitting), we also
avoid creating very small cells, as measured by the ratio
of the cell area to the area of the bounding box of the
scene.

The motivation for rule (3) is to avoid cells that may be so small
that it is unlikely to be hit even by one ray for a given camera
position from which the whole scene is visible. These rules also
speed up the kd-tree building process because, once conditions 1-
3 are established, no further processing is necessary.
These rules have to be considered together with a traversal
routine. For example, if a traversal routine cannot handle 2D cells,
the second rule is not feasible. In our opinion, there is no
guaranteed best kd-tree building or traversal algorithm suitable
for all scenes or all computer architectures. For current PCs and
our implementation of the traversal algorithm (see section 4.3),
these rules yielded roughly a 50% improvement in traversal
performance compared with pure area-based approaches.
In section 4.1 we will continue the discussion of kd-tree creation
and traversal algorithms by assessing the validity of the basic
concepts used and analyzing their drawbacks. This leads us
naturally to the concept of multi-level ray tracing. But before
doing that we have to discuss some additional concepts.

3.2 Grouping Rays Together
The evolution of desktop PCs (both CPUs and GPUs) is such that
math operations are getting faster at a higher rate than memory
operations. The Single Instruction Multiple Data (SIMD)
capability of such devices makes it possible to perform
calculations on four rays for the cost of one [Wald 2001; Benthin
et al 2003]. This is possible if we carefully choose which rays to
shoot together, as there is tremendous geometric spatial coherence
to exploit (especially in primary rays). This makes the caching
mechanism of modern computers very effective. The performance
gains correlate with the size of the group, however, current SIMD
hardware can only support four simultaneous operations. What we
would like is an algorithm that works independently of hardware
features and scales gracefully to a much larger number of
concurrent rays.

Figure 1: Tracing rays together: different rays go through
different cells in the tree.

With grouping of rays comes the necessity to deal with the
situation when rays go through different paths in the tree. Indeed,
as evident from Figure 1, rays oa and ob travel only through the
nearest cell (C0), while other rays (oc and od) go through both
cells. Obviously, as the number of rays in a group increases, so do
the chances that these rays will diverge at some stage in the
traversal process. Basically, we have 2 possibilities: we could
work with a variable number of rays and regroup them every time
some rays “get lost”; or we can mask the inactive rays in the
group. Clearly, under such circumstances we can’t realize the
maximum benefit of processing multiple rays simultaneously, and
worse, the overhead of tracking valid rays might even result in
inferior performance of the concurrent implementation relative to
one that process each ray individually. This also highlights
another reason behind some aspects of the termination criteria (3)
from the previous section. It doesn’t make sense to continue
splitting a cell for which only a few rays will still be active in
most situations. Effective traversal of groups of rays is possible
when all rays follow substantially the same path through the tree.
Consequently, the rays must intersect any given split plane in one
direction (either going from the negative to the positive direction
or vice versa). This translates into the requirement that the
coordinates of the direction vectors for all rays in a group have
the same sign [Wald et al. 2003]. Groups of rays which do not
possess this property must be split into multiple sub-groups which
do, or into individual rays.

3.3 Frustum Culling
From the previous section, we see that there can be a penalty for
grouping rays together (in the form of redundant operations), and
this penalty increases with the size of the group. The desire to
avoid or minimize this penalty led us to the development of the
multi-level ray traversal algorithm. Even though it looks

tempting, we cannot always use just a few specific rays to
ascertain the behavior of the whole group. For example, we may
consider using only the 4 corner rays in Figure 3a to represent all
the rays by proxy. This is the approach utilized by [Havran and
Bittner 2000] and [Dmitriev et al. 2004], where boundary rays are
used to determine the behavior of internal rays. Unfortunately,
this can lead to incorrect traversal choices. Consider the example
in Figure 2. The top AABB is split into the red and blue sub-
cells. We choose two points, b and c on two faces of the blue cell
and one on the edge of the red cell (a) as shown below. If we
place a camera o inside the plane passing through these 3 points,
then all 4 of the corner rays ob, oc, oe, and od intersect only the
blue cell. However, the ray oa (located inside the convex hull of
the 4 corner rays) passes through both sub-cells. By scrutinizing
this example, it is also obvious that even rays strictly inside the
convex hull may not always follow the same path as boundary
rays.

Figure 2: Problems using boundary rays as a proxy for the whole
group. The ray oa, which is inside the convex hull of the 4 corner
rays obcde, intersects both cells, while all 4 corner rays intersect
only the blue cell.

What we can do instead, is to derive some inclusive properties to
characterize the group as a whole, and then use these properties to
determine the behavior of the whole group. One intuitive way
would be to use the convex hull of all rays in the group, formed
by a few given planes. The key operation will then be the
determination of whether the convex hull intersects a particular
axis-aligned box. This is analagous to the classic frustum culling
algorithm used in raster graphics.
We will first describe the straightforward implementation of this
algorithm as defined by Assarsson and Möller [2000] and then
consider its applicability for ray-tracing purposes. In Figure 3a, a
frustum is formed by 4 planes intersecting at one point. Each
plane is defined by this intersection point and a normal, which we
consider to be pointing outward from the frustum. We have to
decide whether this frustum intersects with a given axis-aligned
box. For each frustum plane, there are two vertices of interest
belonging to the axis-aligned box: the one laying farthest in the
positive direction of the plane’s normal (p-vertex); and the other
laying farthest in the negative direction of the normal (n-vertex).
By inserting the n-vertex into the plane equation, we can decide
whether the n-vertex and therefore the whole box is located
outside this particular plane, and so on for each plane, hoping for
a trivial rejection. In addition, we could use the p-vertices to
determine whether or not the entire box is completely inside the
frustum. This approach works for any number of planes forming
the frustum.
In the special case where there are exactly 4 planes, the
performance of this algorithm can be greatly enhanced by storing
the positive and negative components of the 4 normal vectors
separately in SIMD form for each of the x, y, and z components.
As an axis aligned box can be represented by a pair of extremal

vertices (one with the minimum x, y, z, and the other with the
maximum x, y, z coordinate values), we can avoid having to find
the n-vertices explicitly by noticing that for any frustum plane,
the n-vertex has the lower coordinate value (among the 2 extremal
vertex possibilities) for any positive normal coordinate, and vice
versa for the negative normal direction. Consequently, using
hardware with a 4-wide SIMD engine, the box can be culled
against all 4 frustum planes using only 6 multiplications and 5
additions, this makes this approach very attractive for
performance reasons. If we use “+” and “*” to represent 4-way
SIMD operations, these calculations can be performed as follows:
__m128 nplane; // 4 plane values
nplane = (plane_normals[0][0] * bmin[0]) +
 (plane_normals[1][0] * bmax[0]);
nplane = (plane_normals[0][1] * bmin[1]) +
 (plane_normals[1][1] * bmax[1]) + nplane;
nplane = (plane_normals[0][2] * bmin[2]) +
 (plane_normals[1][2] * bmax[2]) + nplane;

plane_normals[0] and [1] contain positive and negative
components of the 4 normal vectors and bmin/bmax – are the
replicated x, y, and z coordinates of the min/max vertices of the
current cell. Effectively, the plane_normals variable is used as a
selector for the appropriate bmin/bmax values. With these 11
operations, we manage to find 4 n-vertices and compute all 4
plane values (for each frustum plane). The variable nplane now
contains these 4 plane values. If any one of these is positive, then
the frustum and the box are separated by the appropriate plane.
This trivial rejection mechanism is not perfect, as shown in
Figure 3b. Here we see the axis-aligned box on the lower left of
the frustum as viewed along its center axis. It fails the n-vertex
outside test for each of the frustum’s planes, implying that it may
intersect the frustum, when, in fact, it is entirely outside the
frustum. The proportion of these failed trivial rejects increases as
the AABB becomes larger and larger (with respect to the
frustum’s cross section). This problem becomes acute when
applied to ray-tracing traversal scenarios where the frustum is
used as a proxy for a group of rays. It is often much smaller than
the individual AABB cells that it is being tested against. One way
to handle this is to reverse the roles of the frustum and AABB: we
could use the AABB’s planes to attempt to separate it from the
frustum instead of the other way around. There is still the danger
of failed trivial rejects, but their proportion will be lower due to
the favorable ratio of the AABB’s cross section to the frustum in
the region where they pass one another. One circumstance that
makes this tactic especially appealing and easy to implement is
when the frustum contains only “coherent” groups of rays, that is,
those in which all ray directions have the same sign.

This inverse approach is illustrated in Figure 3, (c) and (d). We
are trying to decide whether the frustum intersects the red only,
the blue only, or both sub-cells formed by the split plane abcd,
with equation (x = 1). Suppose further that the frustum/plane
intersection is bounded by the values [p, n] for the y coordinate,
namely that all y-coordinates of the intersection lie in this range.
If n is less than the y-value for edge ad, then we can conclude
that:
1. If all rays have negative Y direction components, the

frustum does not intersect the blue sub-cell (Figure
3c). Since we know the frustum intersects the parent
cell, we deduce that only the red sub-cell must be
traversed.

2. If all rays have positive Y direction components, the

(1)

frustum does not intersect the red sub-cell (Figure
3d). Since we know the frustum intersects the parent
cell, we know that only the blue sub-cell must be
traversed.

Figure 3: Direct (a,b) and inverse (c,d) frustum culling
algorithms.

On architectures which allow it, we can execute these comparison
operations in one command, i.e. by comparing the four y
coordinates of frustum/plane intersection with the y-coordinate of
the ad edge.
The inverse algorithm does not use frustum plane normals per se.
What we need instead is the rectangular bounds for each axis-
aligned plane which enclose frustum/plane intersection. This
makes it possible to generalize this algorithm for groups of rays
which do not have a common origin.
Another important property of the inverse frustum culling
algorithm is that when used together with kd-tree traversal, it uses
values only for one axis at a time. As we descend into the kd-tree,
different axes will be processed at each level, thus allowing for
effective culling of the current cell. As with the forward frustum
culling algorithm, there may be situations where we erroneously
conclude that the frustum might intersect a cell when in fact it
does not. Any subsequent processing steps after this point will be
wasted. We are primarily concerned with unnecessary
intersection tests as they are quite expensive. Most of these extra
tests can be avoided by using frustum/plane intersection data as
specified in the inverse algorithm and executing additional
clipping tests at the leaf nodes. At every leaf node, we perform
robust clipping calculations for all 3 possible pairs of axes (xy, yz
and xz) against the 6 AABB box faces.

We will illustrate this in Figure 4 for the case of the x and y axes
by projecting everything on the (z = 0) plane. There are 8 possible
cases which can be easily detected. These cases differ by the
direction of the frustum along the x and y axes and whether the
frustum lies above or below the axis aligned box (using z
projections). These tests enable us to exclude the great majority of
the non-intersecting cases, and even though the remaining ones
may cause some redundant calculations, they are tolerable.

Amazingly enough, all 8 cases can be tested with only 2
comparisons. We will use terminology and ideas from Kay and
Kajiya [1986].

Figure 4: Frustum culling against leaf cell.

An axis-aligned box is defined as an intersection of 3 slabs, where
a slab is the space between two parallel planes. For each ray, we
may compute the entry and exit points for all 3 slabs which are
represented as distances along the ray from the ray’s origin.
Accordingly, for the whole frustum we will need to know the
ranges of these values. If either of the following two statements is
true we conclude that the frustum and the box are separated:

1. (minimum of y-entry values) > (maximum of x-exit values)

2. (minimum of x-entry values) > (maximum of y-exit values) (2)

The first condition here describes cases 1, 3, 6, and 8; the second
condition describes the rest. Instead of these two comparisons we
could use the direct frustum culling algorithm or even an exact
frustum/box intersection test, but this is expensive relative to the
number of non-intersection cases that it eliminates. It is also
possible to execute these 2 tests (for each pair of axes) at each
traversal step, but it is not very effective. We have found that the
best approach is to use assessments (1) for the internal nodes
followed by (2) for the leaves.

4 Tracing Rays at Multiple Levels
Now we have the mathematical apparatus ready to describe the
multi-level ray tracing algorithm (MLRTA). Any hierarchical
acceleration structure imposes a certain spatial organization which
is then stored in essentially linear memory. During a spatial query
this structure is used to find ray/geometry intersection points.
Processing is executed by sequentially narrowing the area of
interest until final tests resolve the query. As an example from
other field of study, we may look for a particular book in a
catalog by narrowing the focus from ‘science’ to ‘computer
graphics’ to ‘ray tracing’.
One problem with using kd-trees for 3D scenes is that one doesn’t
necessarily end up with what might be expected. Consider Figure
5a, the box in the middle of the text objects ends up being sub-
divided as shown in Figure 5b, and it ends up buried deep in the
tree because of higher level split decisions made based on the
surrounding geometry. If this box became the subject of interest
for the camera we would have to traverse the entire kd-tree from

its root for every ray we wish to trace until the box’s cells are
found (as depicted in Figure 5c). Wouldn’t it be much better if
we could dynamically find alternate entry points in the tree
(depending on the current camera view) and start traversing at
these nodes? If we are lucky, we might even find that the optimal
entry point is right at the leaf node itself. Even better, if we use
the beam concept described earlier, we can potentially “traverse”
the kd-tree for all the rays in the beam, directly to the leaf node
(in this optimistic example) in a single step.

Figure 5: Simple object inside complex scene.

4.1 Finding Ideal Entry Points for Groups of
Rays

Restating the results from section 3.3, the following information
is sufficient to execute the inverse frustum culling algorithm:
1. For any given axis-aligned plane, we compute a

rectangle inside this plane, which contains all
possible ray/plane intersection points. This
rectangle does not have to be tight.

2. All rays go in the same direction (i.e. x, y, and z
projections of ray directions have the same sign).

(3)

In this section we will describe a new algorithm which uses this
information and the frustum culling algorithm to find an optimal
entry point for all rays that satisfy condition (3). We will refer to
this as an “entry point search”, or EP search. It will be compared
with the traditional depth-first search for intersection points for
groups of rays using kd-trees [Wald 2004]. We will refer to this as
an “intersection point search” or XP search. The main differences
are that the new EP algorithm is not exhaustive and quickly aborts
branches of the kd-tree which would not contribute to the final
result. The EP search is used to find an optimal place to begin the
traditional XP search.
Definition (3) does not presume any particular organization of the
rays inside the group. Moreover, it does not even require that we
know the specific rays, or even the number of rays, in advance, a
fact which will be very handy later when we discuss adaptive tile
splitting. The next algorithm describes the steps executed while
looking for a common entry point. This is essentially a depth-first
traversal of the visible nodes in the tree allowing for early escape
from the traversal of branches that will not contribute further to
the final result. It is achieved by maintaining a stack of nodes

which can be potentially used as entry points (which we will call
the “bifurcation stack”).
1. The tree is traversed in depth-first order by

• Using the frustum culling algorithm.

• Store all bifurcation nodes (those where both
sub-cells are traversed) in a (last-in-first-out)
stack structure until the first leaf node with
potential intersections is found. This node is
then marked as a candidate entry point node.

2. Continue depth-first walkthrough starting from the
top-most node on the bifurcation stack. If another
leaf with potential intersections is found, the node
taken from the bifurcation stack will become the new
candidate.

3. The algorithm ends and the current candidate node
is returned as an entry point if

• The bifurcation stack is empty.

• All potential rays end inside the current leaf
node. Two cases are possible:

• The leaf has some objects, and, all rays
satisfying condition (3) intersect one of
these objects inside the cell.

• The leaf is empty, but is located inside
some “watertight” object and all rays or
groups satisfying condition (3) intersect
the bounding box of this leaf.

(4)

While executing this algorithm we are not interested in finding
specific ray/object intersections and we may not even be able to
do so since the rays in the group are not required to be defined at
this point. What we are looking for is the potential for
intersections. Specifically, if we cannot exclude an intersection
with any ray satisfying condition (3) we will consider it as a
potential intersection. We will illustrate this algorithm using the
tree pictured in Figure 6.

11
2222

3311
2211

3322
4411

5522 5511
4422

6622 6611 6633

4433 4444
5544 5533

6644
7711 7722

8822 8811

 LLeeggeenndd::

iinntteerrnnaall nnooddeess……
oonn EEPP ppaatthh

oouuttssiiddee EEPP ppaatthh

bbiiffuurrccaattiioonn

lleeaaff

eemmppttyy lleeaaff

EEPP sseeaarrcchh

XXPP sseeaarrcchh

Figure 6: Two traversal algorithms: searching for an entry point
(EEPP) and looking for intersections (XXPP).

Starting at node 1 and using group values described by condition
(3), we realize that only the left sub-cell 21 has to be traversed.
Both sub-cells of 21 have to be considered, so node 21 is stored in
the bifurcation stack and processing continues with nodes 31
(split is ignored), 41 (stored in the stack), and 51 (split is ignored).
While processing leaf 61, we conclude that there is a potential for
intersections. Leaf 61 is then marked as a candidate and the
bifurcation stack is frozen. The next node to consider, 41, is taken

from the stack and we continue the depth-first traversal with
nodes 52 and 63. Leaf 63 has a potential for intersections, so we
mark node 41 as a candidate and move to the next node from the
stack (21), abandoning the processing of the sub-tree starting at
node 64. From node 21 we go to node 32 which has two children:
43 (ignored because it is empty); and 44 (taken). Node 44 has two
leaves: 53 (ignored); and 54 (judged to have potential
intersections). Therefore, we will mark node 21 as a candidate
and return it as the entry point since the bifurcation stack is
empty. All the rays which are bound by condition (3) may now
start the tree traversal at node 21.
After the optimal group entry point is found we may split the
group and continue looking for better entry points for each sub-
group or perform intersection tests for all of the sub-groups to
completion (XP search). Note the dissimilarities between the two
traversal algorithms, one being a search for a common entry point
(EP) and the other which is a search for intersection points (XP):

• At node 21, the XP algorithm is able to exclude node 32 from
further processing since all the rays (in the beam) are now
known and they intersect only with the cell of node 31. The
EP algorithm uses only frustum properties that might intersect
with node 32 and therefore traversal of both nodes on behalf
of the group is required.

• The EP algorithm ignores node 64 when it reaches its parent,
node 52, because it would have no effect on the selection of
the group entry point. The XP algorithm however must
continue the traversal of nodes 64, 71, 72, 81 & 82 because
there may be some intersections to be found there.

This ability of the EP algorithm to disregard non-contributing
branches and to do this on behalf of all the rays in a group helps it
to greatly reduce the overall computations otherwise performed
per ray.

4.2 Tile Splitting
The EP algorithm finds an optimal common entry point for all
rays in a group by representing the group as a whole with the
ranges of the individual ray directions. For beams representing
broad ranges, the EP algorithm will most likely quickly detect
that a good (i.e. deep) entry point is not available. In this case, it
would be advantageous to split the ray direction ranges (and,
accordingly, the actual underlying rays) in an attempt to get better
separate EPs for individual sub-groups. Although the rays
themselves do not have to be evenly distributed, in our
implementation they are.
For primary rays it is practical to choose the initial groups of rays
by splitting the image plane into equal tiles. This allows for trivial
computation of bounding rectangles for the group/plane
intersections as required by (3). Moreover, each tile may be
assigned to a separate thread or task on a multi-processor or
multi-threaded machine.
There are many possible approaches that could be taken here. In
our experiments we used the simplest possible logic to decide
what to do with a tile, basing the decision on 3 parameters:
1. Initial Tile Size (ITS).
2. A Minimum Tile Size (MTS) which automatically

triggers XP search.
3. A Split Factor (SF), which defines how many pieces

to split a tile into.

(5)

Any tile larger than MTS is always split unless the chosen entry
point is already a leaf. This is illustrated in the sequence of

images in Figure 7. It is easy to see how the tile sizes change to
adapt to the changing underlying geometry. Tiles marked in red
are those which have diverging rays (going in different directions)
and are therefore unsuitable for the EP search. For such the XP
search is performed right away for all the coherent sub-groups of
the original tile.

Figure 7: Sequence of frames from Soda Hall scene showing
adaptive tile splitting (red color marks diverging packets).

Depending on a scene and/or the camera position, varying the
values for the ITS/MTS/SF parameters produce different results.
We tested various combinations of these parameters on a
collection of over 2500 different models. We varied the Initial
Tile Size parameter from 16x16 pixels to 256x256 pixels. Each
initial tile was subsequently split either into 4 or 16 sub-tiles and
we used a Minimum Tile Size between 4x4 and 64x64 pixels. The
measured performance variations were not very large, mostly
around 10%. This indicates that it is possible to derive a single set
of parameters which would be roughly optimal for most scenes.
Our best results were achieved by starting from tiles with
128x128 pixels and splitting them as needed into 16 sub-tiles
directly. It is expected that for multi-threaded implementations, a
smaller initial tile size might be better because the thread
execution granularity will be a function of the time required to
process one tile.
Another potential advantage of using the EP algorithm for such
tiles is that it provides a natural way to measure geometric
complexity. Given the way that the kd-tree creation algorithm
works, the size of the sub-tree underneath any given node
(measured by overall number of nodes in the sub-tree) serves as
an indication of the geometrical complexity in this volume of
space. In the extreme case, when an EP is a 2D leaf completely
covered by triangles, we could cast rays sparingly and reserve
more of the ray budget for more complicated regions. This
approach is similar to one described by Ghazanfarpour and
Hasenfratz [1998].

4.3 Interval Traversal Algorithm
The basic premise of MLRTA is that it works even if the exact
rays in the group are not known. If, however, such information is
available, MLRTA can be executed in parallel with the
computation of ray/geometry intersection points. We can then use
the found distances to intersection points to further purge traversal
steps based on visibility culling. In this section we will describe
one such implementation which we are currently using in lieu of
low level traversal (XP search) in our system. It will be described

together with a sample implementation which actually does not
require SIMD instructions in the inner cycle.
The algorithm is based on computing and updating minimum and
maximum distances to the traversed cell for all rays in the group.
At the beginning of the traversal we will store minimum and
maximum distances to the scene’s bounding box in the float array
t_cell[2]. In Figure 1, t_cell[0] = oa and t_cell[1] = oD. For each
traversed cell, by using conditions (3) from section 4.1, we can
compute two values: t_plane[0] – minimum distance to the split
plane P0 in the cell (oδ) and t_plane[1] – maximum such distance
(oα). Then
// If we can verify that all rays exit the cell
// before intersecting the plane...
if (t_cell[1] < t_plane[0]) {
 // Only the nearest cell is traversed.
 // Compute address of the nearest node and
 // continue traversal. t_cell is not changed.
 ...
}

// If all rays enter the cell
// only after intersecting the plane...
if (t_cell[0] > t_plane[1]) {
 // Only the farthest cell is traversed.
 // Compute address of the farthest node and
 // continue traversal. t_cell is not changed.
 ...
}

// We will have to traverse the nearest cell
// followed by the farthest cell. This branch also
// handles a small percentage of misdiagnosed cases
// (when only one cell is actually traversed).

// The next array will contain t_cell values
// for the farthest cell
float t_farthest[2];
t_farthest[0] = max(t_cell[0], t_plane[0]);
t_farthest[1] = t_cell[1];

// Store t_farthest values and the address
// of the farthest cell into the programming stack
// (it will be used after the subtree starting
// at the nearest node is processed).
...

// Modify the t_cell interval for the nearest cell
t_cell[1] = min(t_cell[1], t_plane[1]);
// Continue traversing nearest cell
...

It is evident that this algorithm has the same complexity as one
for traversing an individual ray [Wald 2004]. However, it
executes traversal of all rays in the group simultaneously by using
proxy intervals. Groups cannot be very large as performance will
suffer from too many inactive rays in the group (see discussion in
section 3.2). In our experiments, we found the best group size to
be 4x4, which compares favorably with the 2x2 groups used by
Wald.
Even though the interval traversal algorithm sharply reduces the
required number of operations compared to the diligent traversal
of all 16 rays in the group, overall performance improvement is
only about 20%. The reason is that the branches in the kd-tree
traversal are data dependent with all 3 continuation scenarios
(nearest, farthest or both sub-nodes) occurring with roughly equal
probability.

5 Results and Discussion
The simplest way to evaluate the performance impact of a
particular feature is to test two implementations, one with and one
without the feature. The average performance difference of our
MLRTA and non-MLRTA implementations for the 3 scenes in
Table 1 is about 3.25X for primary rays and 2.75X for primary
and shadow rays. As will be evident from the statistical data in
this section, this is roughly equivalent to the reduction in the
number of traversal steps executed by the algorithm. Compared
with the best results reported elsewhere in the literature, our
traditional implementation (without MLRTA) is still about 2X
faster. We can only speculate that this is due primarily to
different tree construction and somewhat different traversal and
intersection methods, API overhead may also play a role. In this
section we will provide a more formal quantification of the
performance results based on measurements of the mathematical
operations.
We will analyze the MLRTA results by providing data for 4
scenes which vary greatly in scene complexity and occlusion
properties. For convenience, all results will be presented on a per
packet basis - we use packets with 16 rays (4x4). If a total of k
cells are traversed during the rendering of a 1024x1024 pixel
image, the ratio k/(1024*1024/(4*4)) will be used. We account
for all traversal steps regardless of whether they are executed
during the EP or XP search. Only those intersection tests which
were not avoided through AABB culling are included in the
statistics. If a triangle intersection test is avoided then no triangle
data is accessed.

SScceennee
ooff ttrriiaanngglleess

aanndd vviieeww

AAvveerraaggee
mmeeaassuurreemmeennttss
ppeerr 44xx44 ppaacckkeett aatt
11002244×11002244 rreessoolluuttiioonn

EErrww66
((880044))

CCoonnffeerreennccee
((227744KK))

SSooddaa HHaallll
((22119955KK))

AAssiiaann DDrraaggoonn
((77MM))

1. MLRT 3.98 20.87 32.52 32.65 number of
traversed
cells 2. no MLRT 13.00 49.98 71.37 42.18

3. EP search only 0.51 2.30 4.44 2.72

4. MLRT 1.09 2.48 1.59 19.97 non-masked
intersections 5. no MLRT 1.09 2.55 1.52 19.94

Table 2: For primary rays MLRTA significantly reduces the
number of traversal steps (first row vs second) without adversely
affecting the number of intersection tests.

6. MLRT 10.07 53.73 69.07 45.01 number of
traversed
cells 7. no MLRT 24.83 101.06 117.22 58.41

8. MLRT 1.25 3.71 2.17 23.51 non-masked
intersections 9. no MLRT 1.22 3.75 2.09 23.48

Table 3: Corresponding measurements for primary + shadow rays
(one light source).

By analyzing rows 1 and 2 of Table 2 we see that the MLRTA
greatly reduces the number of traversal steps required. This ratio
varies from ~3X for scenes with a lot of occlusion to 1.3X for the
last scene which has limited occlusion. The MLRTA’s goal is to
minimize the number of operations in the most time-consuming
part of the ray-tracing pipeline. The return on investment is quite

high. A 10% investment in finding a good EP yields an overall
performance improvement of 2.5X (in the conference scene).
By examining rows 4 and 5 we see that there is no significant
change in the number of overall intersection tests performed,
which is ideally what you would expect (ie finding good EPs
helps you avoid redundant traversal of the upper parts of the kd-
tree, but has no detrimental effect on the processing at the lower
part of the tree). We have observed that the best RT results are
achieved when roughly 2/3 of the time is spent traversing the kd-
tree and 1/3 actually looking for intersections and that this ideal
ratio increases with model size. Because the termination criteria
do not depend explicitly on the kd-tree depth, the number of
triangles in the leaf nodes remains roughly constant. In most cases
individual triangles can show up in multiple leaf nodes. For those
leaves some redundant intersection tests can be avoided by using
a mailbox mechanism [Amanatides and Woo 1987].
The data in these tables were obtained for the inverse frustum
culling algorithm introduced in section 3.3. The direct method
requires about 20% more EP traversal steps. Also, a direct
frustum culling test is more expensive than an inverse test.
Accordingly, the inverse method clearly has an edge, at least for
the coherent packages which we are currently using.
We have conducted preliminary tests on using MLRTA to
facilitate adaptive geometric anti-aliasing as described above.
Preliminary results show that for a given level of quality it results
in a 50% reduction in the number of actual rays shot for a given
scene (these results were evaluated using static images). In our
experience, since we are now able to view most of these scenes at
interactive rates on ordinary desktop machines, temporal aliasing
artifacts are now more dominant. We are planning to revisit these
issues in the future.
The results given in Table 2 were obtained for primary rays.
Similar conclusions can be drawn also from analysis of secondary
rays. Table 3 includes data for primary and shadow rays for the
same 4 scenes (normalized for one primary packet of 4x4 rays). A
significant portion of the intersection tests for non-occluded
shadow rays can be avoided by excluding objects already hit by
the parent primary rays. For this reason the ratio of traversal vs.
intersection steps is even higher than for primary rays (compare
the quotients of rows 1 to 4 and 6 to 8).

6 Limitations of MLRTA and Future Work
MLRTA does not require advance knowledge of the rays in the
group and uses ranges of directions to traverse the whole group at
once. Even the interval extension, as described in section 4.3, uses
exact rays only during intersection tests and operates with
inclusive intervals during traversal. Although this feature
facilitates adaptive anti-aliasing of the image, it prevents direct
utilization of MLRTA for very “wide” packages with small
numbers of rays. In such cases we end up doing a lot of
unnecessary speculative work on behalf of rays which will never
materialize. This problem cannot be fixed merely by splitting the
range data. In Figure 8, a big group of secondary rays is
represented in some parametric space. If we just split the original
voxel uniformly, some sub-voxels will have no rays at all and
tracing them would be a waste of time.

If the size of the original group of rays is small compared with
number of sub-voxels, it is very unlikely that any sub-voxel will
include a large number of rays. In this situation, MLRTA or any

other collective traversal mechanism will be ineffective. At the
same time, for all secondary rays considered together there exists
a partitioning of the parametric space for which there will be
substantial amount of sub-voxels with a considerable number of
coherent rays in each one. This draws a parallel with the Dirichlet
Principle (if you try to place n+1 rabbits into n cells, there will be
at least one cell with at least 2 rabbits). We have to select sub-
voxels in such a way that they will be large enough to encompass
big groups of rays yet small enough to be traversed mostly
“together” through the tree.

Figure 8: Distribution of secondary rays.
Each red dot represents a ray in some
parametric space (3D origin + 2D
direction). Some voxels have none or very
few rays, while others have a lot of coherent
rays.

We are planning to research these issues, in particular exploring
approaches for culling such 5D voxels first outlined by Arvo and
Kirk [1987]. We assume that the 3D component of such a
parametric space can be handled implicitly by associating rays
with low-level cells in a kd-tree when they are traversed. These
cells are usually small as this is one of the goals of kd-tree
builder. We can then traverse those voxels with a larger number
of constituent rays using the interval approach as described in
section 4.3. All possible splits of the directions of the original
group can be pre-computed using a simple binning technique to
avoid tracing empty groups. Voxels with a small number of rays
could be traversed on a per-ray basis.
This is, of course, speculation at this point and whatever approach
eventually gets used will have to be compared against tracing
individual rays sequentially. Presumably, by selecting the proper
size of the original tile and tracing different levels of secondary
rays separately (as suggested by Nakamaru and Ohno in [1997]),
this could be effective for the majority of scenes.
Considering shadow rays for point lights, they can be handled by
MLRTA directly by tracing them from the light sources to the hit
points produced by the primary rays. Currently, we implemented
a simplified version of this approach by using MLRTA for all the
secondary rays which are reflected from flat surfaces (considering
reflected and shadow rays). For shadow rays originating from
secondary hits, it may be necessary to use partitioning schemes as
outlined at the beginning of this section.
MLRTA can certainly also be used in photon mapping (for the
final gathering step), area lights, and ambient occlusion schemes
[Gritz et al. 2002]. In fact, area lights seem to be well suited for
processing using a frustum formed between the hit point and
polygonal area lights. We are planning to explore these issues in
the near future.

7 Summary
MLRTA uses geometric properties of a large group of rays to find
a common entry point into the kd-tree for all of the rays in the
group, thus avoiding redundant operations. This approach enables
us to find correct intersection points by using just 1/3 of the
traversal steps which would otherwise be required.
The entry point search is carried out by identifying common
group properties and using these properties in lieu of rays. We

analyzed 2 different ways of defining such group properties. In
one, a set of planes enclosing all the rays is created and traversed
through the kd-tree using the direct frustum culling algorithm.
This approach works well in traditional CG applications where
the frustum is ‘big’ and objects are typically ‘small’ and can be
effectively culled against the frustum by using the frustum’s
planes. For ray-tracing applications however, the opposite
characterization is more likely. It allows us to “invert” the
traditional frustum culling algorithm, that is to cull the frustum by
using the faces of the AABBs. This new inverse frustum culling
algorithm is broader in scope and does not include the notion of
frustum bounding planes. Accordingly, it can be used for more
general collections of coherent rays.
Another attractive property of the MLRTA algorithm is that it
provides a natural measure of the geometric complexity of
specific view directions. We intend to continue investigating these
issues, paying particular attention to anti-aliasing in the temporal
domain [Martin et al. 2002]. An appealing approach would be to
track groups of rays through multiple time frames.

Acknowledgments

Many thanks to Ingo Wald, Philipp Slusallek, and Carsten
Benthin for sharing their results and models. The Asian Dragon
and Thai Statuette models are courtesy of the Stanford 3D
Scanning Repository and room model from the accompanying
video is courtesy of the Cornell University Graphics Group. The
authors would like to thank the anonymous reviewers for their
valuable comments and pointing out to missing references. We
gratefully acknowledge discussions with and assistance from
Radek Grzeszczuk and Gordon Stoll.

References
AMANATIDES, J. 1984. Ray Tracing with Cones, In Computer Graphics

(Proceedings of ACM SIGGRAPH 84), 18, 4, ACM, 129-135.
AMANATIDES, J. and WOO, A. 1987. A fast voxel traversal algorithm

for ray tracing. Eurographics Conference Proceedings 1987, 3–10.
ARVO, J. and KIRK, D. 1987. Fast Ray Tracing by Ray Classification,

In Computer Graphics (Proceedings of ACM SIGGRAPH 87), 21, 4,
ACM, 55-64.

ASSARSSON, U. and MÖLLER, T. 2000. Optimized View Frustum
Culling Algorithms for Bounding Boxes. Journal of Graphics Tools,
5, 9-22.

BENTHIN, C., WALD, I., and SLUSALLEK, P. 2003. A Scalable
Approach to Interactive Global Illumination, Computer Graphics
Forum (Proceedings of Eurographics 2003), 22(3), 621-630.

CHO, F.S. and FORSYTH, D. 1999. Interactive ray tracing with the
visibility complex. Computers and Graphics (Special Issue on
Visibility - Techniques and Applications), 23(5), 703-717.

DAVIS, T. and DAVIS, E. 1999. Exploiting frame coherence with the
temporal depth buffer in a distributed computing environment,
Proceedings of the 1999 IEEE symposium on Parallel visualization
and graphics, 29-38.

DMITRIEV, K., HAVRAN, V., and SEIDEL, H.-P. 2004. Faster Ray
Tracing with SIMD Shaft Culling, Research Report, Max-Planck
Institut Für Informatik, MPI–I–2004–4–006.

GENETTI, J., GORDON, D., and WILLIAMS, G. 1998. Adaptive
Supersampling in Object Space Using Pyramidal Rays. Computer
Graphics Forum, 16(1), 29-54.

GHAZANFARPOUR, D. and HASENFRATZ, J-M. 1998. A Beam
Tracing with Precise Antialiasing for Polyhedral Scenes. Computer &
Graphics, 22(1), 103-115.

GLASSNER, A. 1984. Space Subdivision for Fast Ray Tracing. IEEE
Computer Graphics & Applications, 4(10), 15-22.

GRITZ, L., APODACA, T., QUARONI, G., BREDOW, R., GOLDMAN,
D., LANDIS, H., and PHARR, M. 2002. RenderMan in Production.
ACM SIGGRAPH 2002 Course Notes, Course 16.

HAVRAN, V. and BITTNER, J. 2000. LCTS: Ray Shooting using
Longest Common Traversal Sequences. Computer Graphics Forum,
19(3), C59-C70.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms, Ph.D. Thesis,
Czech Technical University.

HAVRAN, V., BITTNER, J., and SEIDEL, H.-P. 2003. Rendering:
Exploiting temporal coherence in ray casted walkthroughs,
Proceedings of the 19th Spring Conference on Computer Graphics
(SCCG 2003), 149-155.

HECKBERT, P. and HANRAHAN, P. 1984. Beam tracing polygonal
objects. In Computer Graphics (Proceedings of ACM SIGGRAPH
84), 18, 4, ACM, 119-127.

KAY, T. L. and KAJIYA, J. T. 1986. Ray Tracing Complex Scenes, In
Computer Graphics (Proceedings of ACM SIGGRAPH 86), 20, 4,
269-278.

MACDONALD, J. and BOOTH, K. 1990. Heuristics for ray tracing using
space subdivision. Visual Computer, 6, 153-166.

MARTIN, W., REINHARD, E., SHIRLEY, P., PARKER, S., and
THOMPSON, W. 2002. Temporally Coherent Interactive Ray
Tracing. Journal of Graphics Tools, 7(2), 41-48.

NAKAMARU, K. and OHNO, Y. 1997. Breadth-First Ray Tracing
Utilizing Uniform Spatial Subdivision, IEEE Transactions On
Visualization and Computer Graphics, 3(4), 316-328.

OHTA, M. and MAEKAWA, M. 1990. Ray-bound tracing for perfect and
efficient anti-aliasing. The Visual Computer: International Journal of
Computer Graphic, 6(3), 125-133.

RAMASUBRAMANIAN, M., PATTANAIK, S., and GREENBERG, D.
1999. A perceptually based physical error metric for realistic image
synthesis. In Proceedings of ACM SIGGRAPH 1999, ACM Press /
ACM SIGGRAPH, Computer Graphics Proceedings, Annual
Conference Series, ACM, 73-82.

SHINYA, M., TAKAHASHI, T., and NAITO, S. 1987. Principles and
applications of pencil tracing. In Computer Graphics (Proceedings of
ACM SIGGRAPH 87), 21, 4, ACM, 45-54.

SZIRMAY-KALOS, L., HAVRAN, V., BALAZS, B., and SZÉCSI, L.
2002. On the Efficiency of Ray-shooting Acceleration Schemes.
Proceedings of the 18th Spring Conference on Computer Graphics
(SCCG 2002), 89-98.

TELLER, S. and ALEX, J. 1998. Frustum Casting for Progressive,
Interactive Rendering. Technical Report, Laboratory for Computer
Science, Massachusetts Institute of Technology, TR-740.

WALD, I., SCHMITTLER, J., BENTHIN, C., SLUSALLEK, P., and
PURCELL, T.J. 2003. Realtime Ray Tracing and its use for
Interactive Global Illumination, STAR, Computer Graphics Forum
(Proceedings of Eurographics 2002), 22(3).

WALD, I., 2004. Realtime Ray Tracing and Interactive Global
Illumination, Ph.D. thesis, Saarland University.

WALD, I., SLUSALLEK, P., BENTHIN, C., and WAGNER, M. 2001.
Interactive Rendering with Coherent Ray Tracing, Computer
Graphics Forum (Proceedings of Eurographics 2001), 20(3), 153-
164.

	1 Introduction
	1.1 MLRTA Overview
	2 Related Work
	3 Basic Concepts
	3.1 Acceleration Structures
	3.2 Grouping Rays Together
	3.3 Frustum Culling

	4 Tracing Rays at Multiple Levels
	4.1 Finding Ideal Entry Points for Groups of Rays
	4.2 Tile Splitting
	4.3 Interval Traversal Algorithm

	5 Results and Discussion
	6 Limitations of MLRTA and Future Work
	7 Summary
	Acknowledgments
	References

