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Abstract

We propose new approaches to ray tracing that greatly reduce the 
required number of operations while strictly preserving the 
geometrical correctness of the solution. A hierarchical “beam” 
structure serves as a proxy for a collection of rays. It is tested 
against a kd-tree representing the overall scene in order to discard 
from consideration the sub-set of the kd-tree (and hence the 
scene) that is guaranteed not to intersect with any possible ray 
inside the beam. This allows for all the rays inside the beam to 
start traversing the tree from some node deep inside thus 
eliminating unnecessary operations. The original beam can be 
further sub-divided, and we can either continue looking for new 
optimal entry points for the sub-beams, or we can decompose the 
beam into individual rays. This is a hierarchical process that can 
be adapted to the geometrical complexity of a particular view 
direction allowing for efficient geometric anti-aliasing. By 
amortizing the cost of partially traversing the tree for all the rays 
in a beam, up to an order of magnitude performance improvement 
can be achieved enabling interactivity for complex scenes on 
ordinary desktop machines. 
CR  Categories: I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism — Ray Tracing, Global Illumination, Beam 
Tracing, Geometric Anti-Aliasing. 
Keywords: ray-tracing, frustum occlusion culling, anti-aliasing 

1 Introduction 
A renewed interest in Ray Tracing (RT) algorithms is being 
fueled by the relentless progress of Moore’s law in terms of raw 
compute power and various algorithmic discoveries resulting in 
significant performance improvements. This makes real-time Ray 
Tracing and Global Illumination (GI) attractive for 
implementation on desktop machines. Some of these new 
discoveries are summarized by Wald et al. [2003]. Table 1 
provides comparison results for our implementation and those 
described by Wald. We were able to improve performance further 
by up to an order of magnitude. This is achieved by amortizing 
per-beam operations which would otherwise be performed for 
each ray in a group. 
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In this paper, we focus on the most fundamental task in ray 
tracing, namely, finding the intersection of one or more rays with 
a given geometry. We consider reducing the average number of 
operations per ray as the most objective metric for comparing 
different algorithms. Generally speaking, there is no one 
guaranteed best ray tracing algorithm as performance depends on 
many factors such as: the overall scene complexity, the current 
view of the scene, and the characteristics of the host platform. 
Many of the techniques we use have been known for some time, 
although not specifically applied to the problem of efficient ray 
tracing. For example, a modified view frustum culling algorithm 
is used to reduce redundant operations for big groups of rays. In 
essence, we’re building on top of the work of Heckbert and 
Hanrahan [1984], Teller and Alex [1998], Assarsson and Möller 
[2000], Kay and Kajiya [1986], and others. Another motivating 
factor is to address the issue of geometrical aliasing which is 
especially pronounced at interactive rates. One way to improve 
the quality of the resulting image is to cast multiple rays through 
each pixel. We propose a mechanism for dynamically measuring 
the geometrical complexity for a given view direction, which can 
be used for budgeting rays more cost-effectively. 
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– shader 7.1 70.2 109.8 Erw6 
804 

 
+ shader 2.3 37.8 50.7 

– shader 4.55 11.2 19.5 Confe- 
rence  
274K 

 
+ shader 1.93 9.5 15.6 

– shader 4.12 21.1 35.5 Soda  
Hall 
2195K 

 
+ shader 1.8 15.3 24.1 

Table 1: Framerate comparison results for 3 scenes. OpenRT data 
is taken from Wald et al. [2003]. Two sets of data are provided: 
one for a null shader, and the other for a simple shader (equivalent 
to placing a point light at the camera position).  

We start by giving a brief overview of related work in section 2. 
Section 3 introduces the basic concepts which will be used 
throughout this article. By following relevant prior work, these 
concepts will be described and then refined and adapted for our 
approach. Then we describe the complete multi-level ray tracing 
pipeline in section 4 and discuss results in section 5. We conclude 
with some considerations for further research ideas in section 6, 
which will also describe limitations of the proposed method. 

1.1 MLRTA Overview 
The central contribution of this paper is a new robust approach to 
high performance ray-tracing which is achieved without any 



approximations or geometric simplifications. Instead of looking 
for ray/geometry intersections, we effectively exclude certain 
objects from consideration for any given group of rays. This is 
accomplished by providing a separate entry point into the global 
acceleration structure (kd-tree) for each group of rays. Instead of 
traversing each constituent ray from the top of the tree, we start at 
the group’s entry node inside the tree. This reduces the average 
number of traversal steps by 2/3rds for typical scenes. 
Further insight came from analyzing the frustum culling 
algorithms used for axis-aligned bounded boxes (AABB) in the 
context of traditional raster graphics. Here, simple tests are used 
on AABB proxies for detailed geometries to purge objects which 
do not intersect the frustum, effectively reducing the amount of 
geometry submitted for rendering. These tests are designed to 
quickly detect the majority of cases where objects do not intersect 
with the view frustum. The objects can be trivially rejected if their 
AABBs can be separated from the frustum by one of the 
frustum’s planes. This works well in those cases where small 
AABBs are culled by a relatively big frustum. A comparable 
approach may be used in ray tracing, where the AABBs represent 
the volumes associated within a kd-tree’s nodes, and the frustum 
represents a beam of rays. Typically, this frustum will be much 
smaller than most of the AABBs in the kd-tree. As a result, using 
the trivial reject algorithm as described above would result in a 
higher percentage of redundant potential accepts (cases where we 
cannot trivially exclude the intersection for non-intersecting 
objects). Conversely, for RT applications we propose reversing 
the roles of the frustum and AABB by using the AABB faces as 
separation planes during depth-first traversal of the kd-tree.  
Furthermore, we recommend new approaches to the kd-tree 
building process which make it more suitable for the Multi Level 
Ray Tracing Algorithm (MLRTA) proposed herein. We also 
introduce the new concept of an “empty occluder”, which is 
basically a tagged empty box contained inside a watertight object. 
We use such empty occluders to stop further traversal of beams 
that completely intersect such occluders. 
All these innovations together allow us to improve the 
performance of the ray-tracing algorithm by up to an order of 
magnitude compared with previous results in the literature. As an 
added bonus, the MLRTA provides a natural mechanism for 
measuring the geometric complexity of the portion of the scene 
visible to a given group of rays, which enables geometric anti-
aliasing. 

2 Related Work 
A number of researchers have developed strategies for exploiting 
coherence between spatially adjacent rays. We took inspiration 
from the early work of Heckbert and Hanrahan [1984], in which 
polygonal beams were used instead of rays to improve the anti-
aliasing properties of an image. The beam was annotated as it 
intersected with objects in the scene so that the edges of these 
interfering objects could be more effectively anti-aliased. Similar 
goals were pursued by different researchers through the 
introduction of cone tracing [Amanatides 1984], pencil tracing 
[Shinya at el. 1984], and ray bounds [Ohta and Maekawa 1990]. 
In [Heckbert and Hanrahan 1984], the beams are persistent with 
extra information accumulated during tracing to describe multiple 
beam/object intersections. Later, researchers switched to splitting 
beams whenever such intersections occurred. In [Ghazanfarpour 
and Hasenfratz 1998], this happens when a beam intersects 

multiple objects thus necessitating smaller sub-beams to precisely 
anti-alias a polyhedral scene. In [Genetti et al. 1998], “pyramidal 
rays” (pyrays) are split when any part of one intersects an object. 
Arvo and Kirk [1987] use a volume in a 5D space to represent a 
collection of rays (3D for origin and 2D for direction). The 
original 5D volume is then dynamically subdivided into 
hypercubes, each linked to a set of objects which are candidates 
for intersection. In [Heckbert and Hanrahan 1984], the beam tree 
which represents the surfaces intersected by the beam, is 
computed in object space and then passed to a polygon renderer 
for scan conversion. In [Teller and Alex 1998], frustum casting is 
proposed which samples discretely in image space, but operates in 
object space. In this algorithm, the frustum is recursively 
subdivided, while object space is organized linearly with indices 
identifying neighbors of a given current cell. In [Cho and Forsyth 
1999], a visibility complex is incrementally constructed enabling 
efficient ray/geometry queries. 
In [Havran and Bittner 2000], Longest Common Traversal 
Sequences are used to amortize common operations among 
multiple rays. In [Dmitriev et al. 2004], pyramidal shafts are used 
for the same purpose. This technique is also extended to 
secondary and shadow rays. In both of these works the convex 
hull of a group of rays is represented by a few boundary rays, 
which are traversed through the scene. It is then assumed that all 
interior rays will follow the same path. This is not always correct 
and we will provide examples illustrating this point in section 3.3. 
We believe that we have come up with the necessary 
mathematical apparatus which is geometrically accurate and 
achieves the same goals.  
All these algorithms attempt to combine view-dependent culling 
in object space with some distance-based visibility determination 
in image space. This is generally achieved by the use of a 
spatially distributed recursive construct which initially 
encompasses multiple rays and is then progressively refined. We 
use the same approach, the fundamental difference between our 
method and these others is that we are not trying to find objects 
that this construct intersects. Instead, we eliminate those objects 
that do not intersect with the construct.  
A different category of algorithms aims at minimizing the 
required number of intersection tests by budgeting rays diligently, 
sampling sparsely in areas of low geometric variation and super-
sampling for geometrically complex or perceptually important 
parts of the image [Ramasubramanian et al. 1999]. Our approach 
facilitates this type of optimization by providing a natural 
measure of geometrical complexity for a specific viewpoint. 

3 Basic Concepts 

3.1 Acceleration Structures 
To naively find an intersection of a ray with a scene, one could 
test this ray against all objects in the scene for an intersection and 
keep the one with the shortest distance from the ray origin. This 
algorithm might have the lowest memory footprint, but its 
execution time is prohibitive. A much better approach would be to 
organize the scene into some sort of data structure (usually called 
an “acceleration structure” – AS) and use this structure to zero in 
on the area of interest in a hierarchical fashion. An AS works by 
splitting 3D space into subsets containing a certain number of 
primitive objects (triangles if no other primitives are used). In 
addition to this spatial organization, specific traversal routines are 
defined as well. These routines are used to quickly decide which 



subsets to look into further for possible intersections. Different 
traversal routines may coexist for the same AS, for example, one 
for primary and another for shadow rays. One object may belong 
to multiple subsets and some subsets may be empty. Various 
types of ASs that lend themselves to different scene geometries 
and/or computer architectures are well known and described in 
the literature [Szirmay-Kalos et al. 2002]. In this work we use a 
kd-tree data structure; a systematic analysis of the kd-tree 
building algorithm was first given by Glassner [1984] and 
followed by numerous publications, in particular by Havran 
[2000].  
The main operation in the kd-tree building process is to split an 
axis-aligned bounding box into two (potentially unequal) boxes 
by a plane orthogonal to one of the axes. The process is repeated 
recursively until some termination criteria are met. The splitting 
algorithm and termination criteria, in essence, define a particular 
flavor of a kd-tree building algorithm. The split position is chosen 
by minimizing a cost function over a set of candidate split 
positions, such as the coordinates of vertices inside the cell and 
the coordinates of triangle/cell intersections. Following 
MacDonald and Booth [1990], we use a surface area-based cost 
function which is computed by multiplying the area of the cell by 
the number of objects intersecting with it. We have modified the 
pure area-based approach to bias it in favor of creating large 
empty cells and also 2D cells (cells with a zero extent along one 
of the axes). The rationale for this adjustment is that a pure area-
based cost function underestimates the importance of placing such 
cells closer to the top of the tree. This modification is based on 
three simple rules applied sequentially: 
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1. We always create an empty cell if its volume with respect 
to the original cell is greater than some threshold (10% in 
our implementation).  

2. If there is a possible split plane which is completely 
covered by co-planar triangles, it will be selected and 
these triangles will be included in the smaller sub-cell. 
This heuristic sits well with the axis-aligned nature of kd-
trees. 

3. In addition to termination criteria based solely on a cost 
function (cost of splitting > cost of non-splitting), we also 
avoid creating very small cells, as measured by the ratio 
of the cell area to the area of the bounding box of the 
scene. 

The motivation for rule (3) is to avoid cells that may be so small 
that it is unlikely to be hit even by one ray for a given camera 
position from which the whole scene is visible. These rules also 
speed up the kd-tree building process because, once conditions 1-
3 are established, no further processing is necessary. 
These rules have to be considered together with a traversal 
routine. For example, if a traversal routine cannot handle 2D cells, 
the second rule is not feasible. In our opinion, there is no 
guaranteed best kd-tree building or traversal algorithm suitable 
for all scenes or all computer architectures. For current PCs and 
our implementation of the traversal algorithm (see section 4.3), 
these rules yielded roughly a 50% improvement in traversal 
performance compared with pure area-based approaches. 
In section 4.1 we will continue the discussion of kd-tree creation 
and traversal algorithms by assessing the validity of the basic 
concepts used and analyzing their drawbacks. This leads us 
naturally to the concept of multi-level ray tracing. But before 
doing that we have to discuss some additional concepts. 

3.2 Grouping Rays Together 
The evolution of desktop PCs (both CPUs and GPUs) is such that 
math operations are getting faster at a higher rate than memory 
operations. The Single Instruction Multiple Data (SIMD) 
capability of such devices makes it possible to perform 
calculations on four rays for the cost of one [Wald 2001; Benthin 
et al 2003]. This is possible if we carefully choose which rays to 
shoot together, as there is tremendous geometric spatial coherence 
to exploit (especially in primary rays). This makes the caching 
mechanism of modern computers very effective. The performance 
gains correlate with the size of the group, however, current SIMD 
hardware can only support four simultaneous operations. What we 
would like is an algorithm that works independently of hardware 
features and scales gracefully to a much larger number of 
concurrent rays. 
 
 
 
 
 
 

 

Figure 1: Tracing rays together: different rays go through 
different cells in the tree. 

With grouping of rays comes the necessity to deal with the 
situation when rays go through different paths in the tree. Indeed, 
as evident from Figure 1, rays oa and ob travel only through the 
nearest cell (C0), while other rays (oc and od) go through both 
cells. Obviously, as the number of rays in a group increases, so do 
the chances that these rays will diverge at some stage in the 
traversal process. Basically, we have 2 possibilities: we could 
work with a variable number of rays and regroup them every time 
some rays “get lost”; or we can mask the inactive rays in the 
group. Clearly, under such circumstances we can’t realize the 
maximum benefit of processing multiple rays simultaneously, and 
worse, the overhead of tracking valid rays might even result in 
inferior performance of the concurrent implementation relative to  
one that process each ray individually. This also highlights 
another reason behind some aspects of the termination criteria (3) 
from the previous section. It doesn’t make sense to continue 
splitting a cell for which only a few rays will still be active in 
most situations. Effective traversal of groups of rays is possible 
when all rays follow substantially the same path through the tree. 
Consequently, the rays must intersect any given split plane in one 
direction (either going from the negative to the positive direction 
or vice versa). This translates into the requirement that the 
coordinates of the direction vectors for all rays in a group have 
the same sign [Wald et al. 2003]. Groups of rays which do not 
possess this property must be split into multiple sub-groups which 
do, or into individual rays. 

3.3 Frustum Culling 
From the previous section, we see that there can be a penalty for 
grouping rays together (in the form of redundant operations), and 
this penalty increases with the size of the group. The desire to 
avoid or minimize this penalty led us to the development of the 
multi-level ray traversal algorithm. Even though it looks 



tempting, we cannot always use just a few specific rays to 
ascertain the behavior of the whole group. For example, we may 
consider using only the 4 corner rays in Figure 3a to represent all 
the rays by proxy. This is the approach utilized by [Havran and 
Bittner 2000] and [Dmitriev et al. 2004], where boundary rays are 
used to determine the behavior of internal rays. Unfortunately, 
this can lead to incorrect traversal choices. Consider the example 
in Figure 2. The top AABB is split into the red and blue sub-
cells. We choose two points, b and c on two faces of the blue cell 
and one on the edge of the red cell (a) as shown below. If we 
place a camera o inside the plane passing through these 3 points, 
then all 4 of the corner rays ob, oc, oe, and od intersect only the 
blue cell. However, the ray oa (located inside the convex hull of 
the 4 corner rays) passes through both sub-cells. By scrutinizing 
this example, it is also obvious that even rays strictly inside the 
convex hull may not always follow the same path as boundary 
rays. 

Figure 2: Problems using boundary rays as a proxy for the whole 
group. The ray oa, which is inside the convex hull of the 4 corner 
rays obcde, intersects both cells, while all 4 corner rays intersect 
only the blue cell. 

What we can do instead, is to derive some inclusive properties to 
characterize the group as a whole, and then use these properties to 
determine the behavior of the whole group. One intuitive way 
would be to use the convex hull of all rays in the group, formed 
by a few given planes. The key operation will then be the 
determination of whether the convex hull intersects a particular 
axis-aligned box. This is analagous to the classic frustum culling 
algorithm used in raster graphics. 
We will first describe the straightforward implementation of this 
algorithm as defined by Assarsson and Möller [2000] and then 
consider its applicability for ray-tracing purposes. In Figure 3a, a 
frustum is formed by 4 planes intersecting at one point. Each 
plane is defined by this intersection point and a normal, which we 
consider to be pointing outward from the frustum. We have to 
decide whether this frustum intersects with a given axis-aligned 
box. For each frustum plane, there are two vertices of interest 
belonging to the axis-aligned box: the one laying farthest in the 
positive direction of the plane’s normal (p-vertex); and the other 
laying farthest in the negative direction of the normal (n-vertex). 
By inserting the n-vertex into the plane equation, we can decide 
whether the n-vertex and therefore the whole box is located 
outside this particular plane, and so on for each plane, hoping for 
a trivial rejection. In addition, we could use the p-vertices to 
determine whether or not the entire box is completely inside the 
frustum. This approach works for any number of planes forming 
the frustum. 
In the special case where there are exactly 4 planes, the 
performance of this algorithm can be greatly enhanced by storing 
the positive and negative components of the 4 normal vectors 
separately in SIMD form for each of the x, y, and z components. 
As an axis aligned box can be represented by a pair of extremal 

vertices (one with the minimum x, y, z, and the other with the 
maximum x, y, z coordinate values), we can avoid having to find 
the n-vertices explicitly by noticing that for any frustum plane, 
the n-vertex has the lower coordinate value (among the 2 extremal 
vertex possibilities) for any positive normal coordinate, and vice 
versa for the negative normal direction. Consequently, using 
hardware with a 4-wide SIMD engine, the box can be culled 
against all 4 frustum planes using only 6 multiplications and 5 
additions, this makes this approach very attractive for 
performance reasons. If we use “+” and “*” to represent 4-way 
SIMD operations, these calculations can be performed as follows: 
__m128 nplane; // 4 plane values 
nplane = (plane_normals[0][0] * bmin[0]) +  
         (plane_normals[1][0] * bmax[0]); 
nplane = (plane_normals[0][1] * bmin[1]) +  
         (plane_normals[1][1] * bmax[1]) + nplane; 
nplane = (plane_normals[0][2] * bmin[2]) +  
         (plane_normals[1][2] * bmax[2]) + nplane; 

plane_normals[0] and [1] contain positive and negative 
components of the 4 normal vectors and bmin/bmax – are the 
replicated x, y, and z coordinates of the min/max vertices of the 
current cell. Effectively, the plane_normals variable is used as a 
selector for the appropriate bmin/bmax values. With these 11 
operations, we manage to find 4 n-vertices and compute all 4 
plane values (for each frustum plane). The variable nplane now 
contains these 4 plane values. If any one of these is positive, then 
the frustum and the box are separated by the appropriate plane. 
This trivial rejection mechanism is not perfect, as shown in 
Figure 3b. Here we see the axis-aligned box on the lower left of 
the frustum as viewed along its center axis. It fails the n-vertex 
outside test for each of the frustum’s planes, implying that it may 
intersect the frustum, when, in fact, it is entirely outside the 
frustum. The proportion of these failed trivial rejects increases as 
the AABB becomes larger and larger (with respect to the 
frustum’s cross section). This problem becomes acute when 
applied to ray-tracing traversal scenarios where the frustum is 
used as a proxy for a group of rays. It is often much smaller than 
the individual AABB cells that it is being tested against. One way 
to handle this is to reverse the roles of the frustum and AABB: we 
could use the AABB’s planes to attempt to separate it from the 
frustum instead of the other way around. There is still the danger 
of failed trivial rejects, but their proportion will be lower due to 
the favorable ratio of the AABB’s cross section to the frustum in 
the region where they pass one another. One circumstance that 
makes this tactic especially appealing and easy to implement is 
when the frustum contains only “coherent” groups of rays, that is, 
those in which all ray directions have the same sign. 

This inverse approach is illustrated in Figure 3, (c) and (d). We 
are trying to decide whether the frustum intersects the red only, 
the blue only, or both sub-cells formed by the split plane abcd, 
with equation (x = 1). Suppose further that the frustum/plane 
intersection is bounded by the values [p, n] for the y coordinate, 
namely that all y-coordinates of the intersection lie in this range. 
If n is less than the y-value for edge ad, then we can conclude 
that: 
1. If all rays have negative Y direction components, the 

frustum does not intersect the blue sub-cell (Figure 
3c). Since we know the frustum intersects the parent 
cell, we deduce that only the red sub-cell must be 
traversed. 

2. If all rays have positive Y direction components, the 

(1) 



frustum does not intersect the red sub-cell (Figure 
3d). Since we know the frustum intersects the parent 
cell, we know that only the blue sub-cell must be 
traversed. 

 
Figure 3: Direct (a,b) and inverse (c,d) frustum culling 
algorithms.  

On architectures which allow it, we can execute these comparison 
operations in one command, i.e. by comparing the four y 
coordinates of frustum/plane intersection with the y-coordinate of 
the ad edge. 
The inverse algorithm does not use frustum plane normals per se. 
What we need instead is the rectangular bounds for each axis-
aligned plane which enclose frustum/plane intersection. This 
makes it possible to generalize this algorithm for groups of rays 
which do not have a common origin.  
Another important property of the inverse frustum culling 
algorithm is that when used together with kd-tree traversal, it uses 
values only for one axis at a time. As we descend into the kd-tree, 
different axes will be processed at each level, thus allowing for 
effective culling of the current cell. As with the forward frustum 
culling algorithm, there may be situations where we erroneously 
conclude that the frustum might intersect a cell when in fact it 
does not. Any subsequent processing steps after this point will be 
wasted.  We are primarily concerned with unnecessary 
intersection tests as they are quite expensive. Most of these extra 
tests can be avoided by using frustum/plane intersection data as 
specified in the inverse algorithm and executing additional 
clipping tests at the leaf nodes. At every leaf node, we perform 
robust clipping calculations for all 3 possible pairs of axes (xy, yz 
and xz) against the 6 AABB box faces. 

We will illustrate this in Figure 4 for the case of the x and y axes 
by projecting everything on the (z = 0) plane. There are 8 possible 
cases which can be easily detected. These cases differ by the 
direction of the frustum along the x and y axes and whether the 
frustum lies above or below the axis aligned box (using z 
projections). These tests enable us to exclude the great majority of 
the non-intersecting cases, and even though the remaining ones 
may cause some redundant calculations, they are tolerable. 

Amazingly enough, all 8 cases can be tested with only 2 
comparisons. We will use terminology and ideas from Kay and 
Kajiya [1986]. 

 
Figure 4: Frustum culling against leaf cell.  

An axis-aligned box is defined as an intersection of 3 slabs, where 
a slab is the space between two parallel planes. For each ray, we 
may compute the entry and exit points for all 3 slabs which are 
represented as distances along the ray from the ray’s origin. 
Accordingly, for the whole frustum we will need to know the 
ranges of these values. If either of the following two statements is 
true we conclude that the frustum and the box are separated: 

1. (minimum of y-entry values)  >  (maximum of x-exit values) 

2. (minimum of x-entry values)  >  (maximum of y-exit values) (2) 

The first condition here describes cases 1, 3, 6, and 8; the second 
condition describes the rest. Instead of these two comparisons we 
could use the direct frustum culling algorithm or even an exact 
frustum/box intersection test, but this is expensive relative to the 
number of non-intersection cases that it eliminates. It is also 
possible to execute these 2 tests (for each pair of axes) at each 
traversal step, but it is not very effective. We have found that the 
best approach is to use assessments (1) for the internal nodes 
followed by (2) for the leaves. 

4 Tracing Rays at Multiple Levels 
Now we have the mathematical apparatus ready to describe the 
multi-level ray tracing algorithm (MLRTA). Any hierarchical 
acceleration structure imposes a certain spatial organization which 
is then stored in essentially linear memory. During a spatial query 
this structure is used to find ray/geometry intersection points. 
Processing is executed by sequentially narrowing the area of 
interest until final tests resolve the query. As an example from 
other field of study, we may look for a particular book in a 
catalog by narrowing the focus from ‘science’ to ‘computer 
graphics’ to ‘ray tracing’. 
One problem with using kd-trees for 3D scenes is that one doesn’t 
necessarily end up with what might be expected. Consider Figure 
5a, the box in the middle of the text objects ends up being sub-
divided as shown in Figure 5b, and it ends up buried deep in the 
tree because of higher level split decisions made based on the 
surrounding geometry. If this box became the subject of interest 
for the camera we would have to traverse the entire kd-tree from 



its root for every ray we wish to trace until the box’s cells are 
found (as depicted in Figure 5c). Wouldn’t it be much better if 
we could dynamically find alternate entry points in the tree 
(depending on the current camera view) and start traversing at 
these nodes? If we are lucky, we might even find that the optimal 
entry point is right at the leaf node itself. Even better, if we use 
the beam concept described earlier, we can potentially “traverse” 
the kd-tree for all the rays in the beam, directly to the leaf node 
(in this optimistic example) in a single step. 

 
Figure 5: Simple object inside complex scene. 

4.1 Finding Ideal Entry Points for Groups of 
Rays 

Restating the results from section 3.3, the following information 
is sufficient to execute the inverse frustum culling algorithm: 
1. For any given axis-aligned plane, we compute a 

rectangle inside this plane, which contains all 
possible ray/plane intersection points. This 
rectangle does not have to be tight. 

2. All rays go in the same direction (i.e. x, y, and z 
projections of ray directions have the same sign). 

(3) 

In this section we will describe a new algorithm which uses this 
information and the frustum culling algorithm to find an optimal 
entry point for all rays that satisfy condition (3). We will refer to 
this as an “entry point search”, or EP search. It will be compared 
with the traditional depth-first search for intersection points for 
groups of rays using kd-trees [Wald 2004]. We will refer to this as 
an “intersection point search” or XP search. The main differences 
are that the new EP algorithm is not exhaustive and quickly aborts 
branches of the kd-tree which would not contribute to the final 
result. The EP search is used to find an optimal place to begin the 
traditional XP search. 
Definition (3) does not presume any particular organization of the 
rays inside the group. Moreover, it does not even require that we 
know the specific rays, or even the number of rays, in advance, a 
fact which will be very handy later when we discuss adaptive tile 
splitting. The next algorithm describes the steps executed while 
looking for a common entry point. This is essentially a depth-first 
traversal of the visible nodes in the tree allowing for early escape 
from the traversal of branches that will not contribute further to 
the final result. It is achieved by maintaining a stack of nodes 

which can be potentially used as entry points (which we will call 
the “bifurcation stack”). 
1. The tree is traversed in depth-first order by 

• Using the frustum culling algorithm. 

• Store all bifurcation nodes (those where both 
sub-cells are traversed) in a (last-in-first-out) 
stack structure until the first leaf node with 
potential intersections is found. This node is 
then marked as a candidate entry point node. 

2. Continue depth-first walkthrough starting from the 
top-most node on the bifurcation stack. If another 
leaf with potential intersections is found, the node 
taken from the bifurcation stack will become the new 
candidate. 

3. The algorithm ends and the current candidate node 
is returned as an entry point if 

• The bifurcation stack is empty. 

• All potential rays end inside the current leaf 
node. Two cases are possible: 

• The leaf has some objects, and, all rays 
satisfying condition (3) intersect one of 
these objects inside the cell. 

• The leaf is empty, but is located inside 
some “watertight” object and all rays or 
groups satisfying condition (3) intersect 
the bounding box of this leaf.  

(4) 

While executing this algorithm we are not interested in finding 
specific ray/object intersections and we may not even be able to 
do so since the rays in the group are not required to be defined at 
this point. What we are looking for is the potential for 
intersections. Specifically, if we cannot exclude an intersection 
with any ray satisfying condition (3) we will consider it as a 
potential intersection. We will illustrate this algorithm using the 
tree pictured in Figure 6. 
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Figure 6: Two traversal algorithms: searching for an entry point 
(EEPP) and looking for intersections (XXPP). 

Starting at node 1 and using group values described by condition 
(3), we realize that only the left sub-cell 21 has to be traversed. 
Both sub-cells of 21 have to be considered, so node 21 is stored in 
the bifurcation stack and processing continues with nodes 31 
(split is ignored), 41 (stored in the stack), and 51 (split is ignored). 
While processing leaf 61, we conclude that there is a potential for 
intersections. Leaf 61 is then marked as a candidate and the 
bifurcation stack is frozen. The next node to consider, 41, is taken 



from the stack and we continue the depth-first traversal with 
nodes 52 and 63. Leaf 63 has a potential for intersections, so we 
mark node 41 as a candidate and move to the next node from the 
stack (21), abandoning the processing of the sub-tree starting at 
node 64. From node 21 we go to node 32 which has two children: 
43 (ignored because it is empty); and 44 (taken). Node 44 has two 
leaves: 53 (ignored); and 54 (judged to have potential 
intersections). Therefore, we will mark node 21 as a candidate 
and return it as the entry point since the bifurcation stack is 
empty. All the rays which are bound by condition (3) may now 
start the tree traversal at node 21.  
After the optimal group entry point is found we may split the 
group and continue looking for better entry points for each sub-
group or perform intersection tests for all of the sub-groups to 
completion (XP search). Note the dissimilarities between the two 
traversal algorithms, one being a search for a common entry point 
(EP) and the other which is a search for intersection points (XP): 

• At node 21, the XP algorithm is able to exclude node 32 from 
further processing since all the rays (in the beam) are now 
known and they intersect only with the cell of node 31. The 
EP algorithm uses only frustum properties that might intersect 
with node 32 and therefore traversal of both nodes on behalf 
of the group is required.  

• The EP algorithm ignores node 64 when it reaches its parent, 
node 52, because it would have no effect on the selection of 
the group entry point. The XP algorithm however must 
continue the traversal of nodes 64, 71, 72, 81 & 82 because 
there may be some intersections to be found there.  

This ability of the EP algorithm to disregard non-contributing 
branches and to do this on behalf of all the rays in a group helps it 
to greatly reduce the overall computations otherwise performed 
per ray.  

4.2 Tile Splitting  
The EP algorithm finds an optimal common entry point for all 
rays in a group by representing the group as a whole with the 
ranges of the individual ray directions. For beams representing 
broad ranges, the EP algorithm will most likely quickly detect 
that a good (i.e. deep) entry point is not available. In this case, it 
would be advantageous to split the ray direction ranges (and, 
accordingly, the actual underlying rays) in an attempt to get better 
separate EPs for individual sub-groups. Although the rays 
themselves do not have to be evenly distributed, in our 
implementation they are. 
For primary rays it is practical to choose the initial groups of rays 
by splitting the image plane into equal tiles. This allows for trivial 
computation of bounding rectangles for the group/plane 
intersections as required by (3). Moreover, each tile may be 
assigned to a separate thread or task on a multi-processor or 
multi-threaded machine.  
There are many possible approaches that could be taken here. In 
our experiments we used the simplest possible logic to decide 
what to do with a tile, basing the decision on 3 parameters:  
1. Initial Tile Size (ITS). 
2. A Minimum Tile Size (MTS) which automatically 

triggers XP search. 
3. A Split Factor (SF), which defines how many pieces 

to split a tile into.  

(5) 

Any tile larger than MTS is always split unless the chosen entry 
point is already a leaf. This is illustrated in the sequence of 

images in Figure 7. It is easy to see how the tile sizes change to 
adapt to the changing underlying geometry. Tiles marked in red 
are those which have diverging rays (going in different directions) 
and are therefore unsuitable for the EP search. For such the XP 
search is performed right away for all the coherent sub-groups of 
the original tile. 

 
Figure 7: Sequence of frames from Soda Hall scene showing 
adaptive tile splitting (red color marks diverging packets). 

Depending on a scene and/or the camera position, varying the 
values for the ITS/MTS/SF parameters produce different results. 
We tested various combinations of these parameters on a 
collection of over 2500 different models. We varied the Initial 
Tile Size parameter from 16x16 pixels to 256x256 pixels. Each 
initial tile was subsequently split either into 4 or 16 sub-tiles and 
we used a Minimum Tile Size between 4x4 and 64x64 pixels. The 
measured performance variations were not very large, mostly 
around 10%. This indicates that it is possible to derive a single set 
of parameters which would be roughly optimal for most scenes. 
Our best results were achieved by starting from tiles with 
128x128 pixels and splitting them as needed into 16 sub-tiles 
directly. It is expected that for multi-threaded implementations, a 
smaller initial tile size might be better because the thread 
execution granularity will be a function of the time required to 
process one tile. 
Another potential advantage of using the EP algorithm for such 
tiles is that it provides a natural way to measure geometric 
complexity. Given the way that the kd-tree creation algorithm 
works, the size of the sub-tree underneath any given node 
(measured by overall number of nodes in the sub-tree) serves as 
an indication of the geometrical complexity in this volume of 
space. In the extreme case, when an EP is a 2D leaf completely 
covered by triangles, we could cast rays sparingly and reserve 
more of the ray budget for more complicated regions. This 
approach is similar to one described by Ghazanfarpour and 
Hasenfratz [1998].  

4.3 Interval Traversal Algorithm  
The basic premise of MLRTA is that it works even if the exact 
rays in the group are not known. If, however, such information is 
available, MLRTA can be executed in parallel with the 
computation of ray/geometry intersection points. We can then use 
the found distances to intersection points to further purge traversal 
steps based on visibility culling. In this section we will describe 
one such implementation which we are currently using in lieu of 
low level traversal (XP search) in our system. It will be described 



together with a sample implementation which actually does not 
require SIMD instructions in the inner cycle.  
The algorithm is based on computing and updating minimum and 
maximum distances to the traversed cell for all rays in the group. 
At the beginning of the traversal we will store minimum and 
maximum distances to the scene’s bounding box in the float array 
t_cell[2]. In Figure 1, t_cell[0] = oa and t_cell[1] = oD. For each 
traversed cell, by using conditions (3) from section 4.1, we can 
compute two values: t_plane[0] – minimum distance to the split 
plane P0 in the cell (oδ) and t_plane[1] – maximum such distance 
(oα). Then 
// If we can verify that all rays exit the cell  
// before intersecting the plane... 
if (t_cell[1] < t_plane[0]) { 
    // Only the nearest cell is traversed. 
    // Compute address of the nearest node and  
    // continue traversal. t_cell is not changed. 
    ... 
} 
 
// If all rays enter the cell  
// only after intersecting the plane... 
if (t_cell[0] > t_plane[1]) { 
    // Only the farthest cell is traversed. 
    // Compute address of the farthest node and  
    // continue traversal. t_cell is not changed. 
    ... 
} 
 
// We will have to traverse the nearest cell 
// followed by the farthest cell. This branch also 
// handles a small percentage of misdiagnosed cases 
// (when only one cell is actually traversed). 
 
// The next array will contain t_cell values  
// for the farthest cell 
float t_farthest[2]; 
t_farthest[0] = max(t_cell[0], t_plane[0]); 
t_farthest[1] = t_cell[1]; 
 
// Store t_farthest values and the address  
// of the farthest cell into the programming stack  
// (it will be used after the subtree starting  
// at the nearest node is processed). 
... 
 
// Modify the t_cell interval for the nearest cell 
t_cell[1] = min(t_cell[1], t_plane[1]); 
// Continue traversing nearest cell 
... 

It is evident that this algorithm has the same complexity as one 
for traversing an individual ray [Wald 2004]. However, it 
executes traversal of all rays in the group simultaneously by using 
proxy intervals. Groups cannot be very large as performance will 
suffer from too many inactive rays in the group (see discussion in 
section 3.2). In our experiments, we found the best group size to 
be 4x4, which compares favorably with the 2x2 groups used by 
Wald. 
Even though the interval traversal algorithm sharply reduces the 
required number of operations compared to the diligent traversal 
of all 16 rays in the group, overall performance improvement is 
only about 20%.  The reason is that the branches in the kd-tree 
traversal are data dependent with all 3 continuation scenarios 
(nearest, farthest or both sub-nodes) occurring with roughly equal 
probability. 

5 Results and Discussion 
The simplest way to evaluate the performance impact of a 
particular feature is to test two implementations, one with and one 
without the feature. The average performance difference of our 
MLRTA and non-MLRTA implementations for the 3 scenes in 
Table 1 is about 3.25X for primary rays and 2.75X for primary 
and shadow rays. As will be evident from the statistical data in 
this section, this is roughly equivalent to the reduction in the 
number of traversal steps executed by the algorithm. Compared 
with the best results reported elsewhere in the literature, our 
traditional implementation (without MLRTA) is still about 2X 
faster.  We can only speculate that this is due primarily to 
different tree construction and somewhat different traversal and 
intersection methods, API overhead may also play a role. In this 
section we will provide a more formal quantification of the 
performance results based on measurements of the mathematical 
operations. 
We will analyze the MLRTA results by providing data for 4 
scenes which vary greatly in scene complexity and occlusion 
properties. For convenience, all results will be presented on a per 
packet basis - we use packets with 16 rays (4x4). If a total of k 
cells are traversed during the rendering of a 1024x1024 pixel 
image, the ratio k/(1024*1024/(4*4)) will be used. We account 
for all traversal steps regardless of whether they are executed 
during the EP or XP search. Only those intersection tests which 
were not avoided through AABB culling are included in the 
statistics. If a triangle intersection test is avoided then no triangle 
data is accessed. 
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1.      MLRT 3.98 20.87 32.52 32.65 number of 
traversed 
cells 2. no MLRT 13.00 49.98 71.37 42.18 

3. EP search only 0.51 2.30 4.44 2.72 

4.      MLRT 1.09 2.48 1.59 19.97 non-masked 
intersections 5. no MLRT 1.09 2.55 1.52 19.94 

Table 2: For primary rays MLRTA significantly reduces the 
number of traversal steps (first row vs second) without adversely 
affecting the number of intersection tests. 

6.      MLRT 10.07 53.73 69.07 45.01 number of 
traversed 
cells 7. no MLRT 24.83 101.06 117.22 58.41 

8.      MLRT 1.25 3.71 2.17 23.51 non-masked 
intersections 9. no MLRT 1.22 3.75 2.09 23.48 

Table 3: Corresponding measurements for primary + shadow rays 
(one light source).  

By analyzing rows 1 and 2 of Table 2 we see that the MLRTA 
greatly reduces the number of traversal steps required. This ratio 
varies from ~3X for scenes with a lot of occlusion to 1.3X for the 
last scene which has limited occlusion. The MLRTA’s goal is to 
minimize the number of operations in the most time-consuming 
part of the ray-tracing pipeline. The return on investment is quite 



high. A 10% investment in finding a good EP yields an overall 
performance improvement of 2.5X (in the conference scene).  
By examining rows 4 and 5 we see that there is no significant 
change in the number of overall intersection tests performed, 
which is ideally what you would expect (ie finding good EPs 
helps you avoid redundant traversal of the upper parts of the kd-
tree, but has no detrimental effect on the processing at the lower 
part of the tree). We have observed that the best RT results are 
achieved when roughly 2/3 of the time is spent traversing the kd-
tree and 1/3 actually looking for intersections and that this ideal 
ratio increases with model size. Because the termination criteria 
do not depend explicitly on the kd-tree depth, the number of 
triangles in the leaf nodes remains roughly constant. In most cases 
individual triangles can show up in multiple leaf nodes. For those 
leaves some redundant intersection tests can be avoided by using 
a mailbox mechanism [Amanatides and Woo 1987]. 
The data in these tables were obtained for the inverse frustum 
culling algorithm introduced in section 3.3. The direct method 
requires about 20% more EP traversal steps. Also, a direct 
frustum culling test is more expensive than an inverse test. 
Accordingly, the inverse method clearly has an edge, at least for 
the coherent packages which we are currently using. 
We have conducted preliminary tests on using MLRTA to 
facilitate adaptive geometric anti-aliasing as described above.  
Preliminary results show that for a given level of quality it results 
in a 50% reduction in the number of actual rays shot for a given 
scene (these results were evaluated using static images). In our 
experience, since we are now able to view most of these scenes at 
interactive rates on ordinary desktop machines, temporal aliasing 
artifacts are now more dominant. We are planning to revisit these 
issues in the future. 
The results given in Table 2 were obtained for primary rays. 
Similar conclusions can be drawn also from analysis of secondary 
rays. Table 3 includes data for primary and shadow rays for the 
same 4 scenes (normalized for one primary packet of 4x4 rays). A 
significant portion of the intersection tests for non-occluded 
shadow rays can be avoided by excluding objects already hit by 
the parent primary rays. For this reason the ratio of traversal vs. 
intersection steps is even higher than for primary rays (compare 
the quotients of rows 1 to 4 and 6 to 8). 

6 Limitations of MLRTA and Future Work 
MLRTA does not require advance knowledge of the rays in the 
group and uses ranges of directions to traverse the whole group at 
once. Even the interval extension, as described in section 4.3, uses 
exact rays only during intersection tests and operates with 
inclusive intervals during traversal. Although this feature 
facilitates adaptive anti-aliasing of the image, it prevents direct 
utilization of MLRTA for very “wide” packages with small 
numbers of rays. In such cases we end up doing a lot of 
unnecessary speculative work on behalf of rays which will never 
materialize. This problem cannot be fixed merely by splitting the 
range data. In Figure 8, a big group of secondary rays is 
represented in some parametric space. If we just split the original 
voxel uniformly, some sub-voxels will have no rays at all and 
tracing them would be a waste of time. 

If the size of the original group of rays is small compared with 
number of sub-voxels, it is very unlikely that any sub-voxel will 
include a large number of rays. In this situation, MLRTA or any 

other collective traversal mechanism will be ineffective. At the 
same time, for all secondary rays considered together there exists 
a partitioning of the parametric space for which there will be 
substantial amount of sub-voxels with a considerable number of 
coherent rays in each one. This draws a parallel with the Dirichlet 
Principle (if you try to place n+1 rabbits into n cells, there will be 
at least one cell with at least 2 rabbits). We have to select sub-
voxels in such a way that they will be large enough to encompass 
big groups of rays yet small enough to be traversed mostly 
“together” through the tree. 
 

 
Figure 8: Distribution of secondary rays. 
Each red dot represents a ray in some 
parametric space (3D origin + 2D 
direction). Some voxels have none or very 
few rays, while others have a lot of coherent 
rays. 

 
We are planning to research these issues, in particular exploring 
approaches for culling such 5D voxels first outlined by Arvo and 
Kirk [1987]. We assume that the 3D component of such a 
parametric space can be handled implicitly by associating rays 
with low-level cells in a kd-tree when they are traversed. These 
cells are usually small as this is one of the goals of kd-tree 
builder. We can then traverse those voxels with a larger number 
of constituent rays using the interval approach as described in 
section 4.3. All possible splits of the directions of the original 
group can be pre-computed using a simple binning technique to 
avoid tracing empty groups. Voxels with a small number of rays 
could be traversed on a per-ray basis. 
This is, of course, speculation at this point and whatever approach 
eventually gets used will have to be compared against tracing 
individual rays sequentially. Presumably, by selecting the proper 
size of the original tile and tracing different levels of secondary 
rays separately (as suggested by Nakamaru and Ohno in [1997]), 
this could be effective for the majority of scenes. 
Considering shadow rays for point lights, they can be handled by 
MLRTA directly by tracing them from the light sources to the hit 
points produced by the primary rays. Currently, we implemented 
a simplified version of this approach by using MLRTA for all the 
secondary rays which are reflected from flat surfaces (considering 
reflected and shadow rays). For shadow rays originating from 
secondary hits, it may be necessary to use partitioning schemes as 
outlined at the beginning of this section.  
MLRTA can certainly also be used in photon mapping (for the 
final gathering step), area lights, and ambient occlusion schemes 
[Gritz et al. 2002]. In fact, area lights seem to be well suited for 
processing using a frustum formed between the hit point and 
polygonal area lights. We are planning to explore these issues in 
the near future. 

7 Summary 
MLRTA uses geometric properties of a large group of rays to find 
a common entry point into the kd-tree for all of the rays in the 
group, thus avoiding redundant operations. This approach enables 
us to find correct intersection points by using just 1/3 of the 
traversal steps which would otherwise be required.  
The entry point search is carried out by identifying common 
group properties and using these properties in lieu of rays. We 



analyzed 2 different ways of defining such group properties. In 
one, a set of planes enclosing all the rays is created and traversed 
through the kd-tree using the direct frustum culling algorithm. 
This approach works well in traditional CG applications where 
the  frustum is ‘big’ and objects are typically ‘small’ and can be 
effectively culled against the frustum by using the frustum’s 
planes. For ray-tracing applications however, the opposite 
characterization is more likely. It allows us to “invert” the 
traditional frustum culling algorithm, that is to cull the frustum by 
using the faces of the AABBs. This new inverse frustum culling 
algorithm is broader in scope and does not include the notion of 
frustum bounding planes. Accordingly, it can be used for more 
general collections of coherent rays. 
Another attractive property of the MLRTA algorithm is that it 
provides a natural measure of the geometric complexity of 
specific view directions. We intend to continue investigating these 
issues, paying particular attention to anti-aliasing in the temporal 
domain [Martin et al. 2002]. An appealing approach would be to 
track groups of rays through multiple time frames.  
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