
Using the Z Buffer for Visual and Special Effects 
 

Introduction 
 
The PlayStation 2 graphics chip is very powerful, flexible and has an incredible pixel 
fill rate for both un-textured and textured primitives. The Graphics Synthesizer is 
capable of processing 16 pixels per cycle when not performing texture mapping and 8 
pixels per cycle when performing texture mapping.  The GS runs at 150 Mhz allowing 
an achievable maximum pixel fill rate of 2.4 Giga pixels without texture mapping 
turned on and 1.2 Giga pixels with texture mapping.  These performance figures do 
not reduce even when using 32 bit pixels with bilinear filtering, alpha blending, and Z 
buffer testing turned on. Also, the draw, display, z and texture buffers can be located 
at any location within the 4 Mega Bytes of Embedded DRAM on the PlayStation 2 
graphics chip.  All these buffers are not fixed to their pixel formats, a 24-Bit Z Buffer 
can actually be used as a 24-Bit Texture.  With these flexible options, developers can 
take advantage of the massive pixel fill rate and perform some interesting visual and 
special effects.  I’ll describe two techniques that developers can easily incorporate 
into their game titles with very little overhead. 
 

Using Z Buffer Channel for Fogging 
 
This technique demonstrates how to use the 'fog' feature of the GS, where objects 
appear to fade into the background as they move into the distance. This technique 
helps remove the ugly effect of 'pop-up', where large objects suddenly appear 
onscreen as they move into the camera's drawing range. 
 
The GS allows fogging for all primitive types by setting the FOG attribute in the 
primitive.  However, this per-vertex method actually reduces the fill rate and isn’t 
perspective correct.  The reason why it reduces the fill rate is because it’s effectively a 
second alpha blend pass when applying the fog colour to the final primitive.  The post 
process pixel-level fogging technique is better because it’s perspective correct and is 
very fast to apply as a final pass over the current Draw Buffer.  I’ll now go into great 
detail on how to apply this technique into your game title. 
 

Finding a good Z range 
 
The GS channel copying trick can quickly and easily grab the bit range between 15-8 
when using a 24/32-Bit Z Buffer, which maps out reasonably well onto your game 
world.  These middle bits will start the fog in the middle of the scene and will extend 
to the far clipping plane.  The Red and Blue channel bit ranges can be extracted but 
requires another technique that isn’t as fast as grabbing the Green channel and they 
both don’t very map well to the scene.   Please see the diagram below 
 
32-Bit Pixel Format 



 

Moving the Green Channel of the Z Buffer 
 
We therefore have to somehow find a fast and easy method to move the Green 
channel of the Z Buffer into the Alpha Channel of the Draw Buffer.  There is 
basically one function that is used to convert the Z Buffer into a texture, move Red 
and Green channels into Blue and Alpha channels, and finally move the Alpha 
channel of the converted texture into the Alpha channel of the Draw Buffer. The first 
three steps can be done in one quick single pass: 
 

1) Represent Z Buffer storage format as 32 Bit texture storage format 
2) Move Red and Green channels of Z Buffer texture into Blue and Alpha 

channels of Z Buffer texture 
3) Move Alpha channel of Z Buffer texture into Draw Buffer Alpha channel 
4) Draw non-textured sprite as fog pass onto Draw Buffer using Destination 

Alpha 
 
 
 
1) 

 
 
2) 
 

 



3) 
 

 
 
4) 
 

 
 
 
 
 
The secret to this function is to trick the GS into thinking the texture is 16-bit when it 
is actually 32-bit.  The next two diagrams show the relationship between the two pixel 
formats. 

 
 
The destination buffer for this function will be the current Draw Buffer. The pixel 
mode for this buffer is 16-Bit and the lower 8 Bits are masked out because copying is 
done in-place and only the alpha channel should be written to.  The diagram below 
shows how the masking is achieved. 
 



 
 
The Z Buffer is not used in this operation so the Z Writes are turned off and set the Z 
Testing is set to Z Always.  It is also very important to change the scissoring region of 
the copying operation as because the GS is tricked into thinking the Z Buffer is 16-bit, 
the scissor area height must doubled before performing any buffer copying.  
 

Why use 8 pixel wide strips? 
 
The best way to copy between the source and destination buffers is to use eight pixel 
wide strips since only two channels of the Z Buffer will be copied.  For the source 
buffer, eight pixel wide strips are copied and then eight pixels are skipped.  The 
destination starting offset is eight pixels because only the Blue and Alpha channels 
are written to the buffer.   
 
Z16-Bit Source Data 
 

 
16-Bit Destination Data 
 

 
 

Creating the Fog Visual Appearance 
 
Another function is used to draw one fog pass over the draw buffer using destination 
alpha values. There is no need to update the Z Buffer but the Z Test still must be 
performed.  The alpha input value comes from the Alpha channel in the Draw Buffer, 
which happens to be the recently copied Green channel of the Z Buffer.  A non-
textured sprite is finally alpha blended over the Draw Buffer at a fixed Z range in 32 
pixel wide strips. 
 



For speed the GS fetches both frame buffer and Z Buffer at the same time. The block 
layout for frame-buffer and Z Buffer is laid out in a format, which effectively divides 
the page into two parts. While the frame-buffer accesses the left side of a page, the Z 
Buffer will be accessing the right side (and vice-versa), allowing both fetches to 
happen from different physical memory blocks internally and thus occur in parallel. 
This means that the page buffer will only cache half a page of screen and half a page 
of Z Buffer at any given time. For this reason you should consider the page cache 
width for frame-buffer or Z Buffer to be effectively 32 pixels wide, rather than 64. 
 
 

 
It is also possible to get a more linear fog curve by using an 8-Bit texture and CLUT 
to represent the fog density and the fog colour.  The GS alpha value range is between 
0-255 with 1.0 represented by 128 so that the alpha channel can be used to over 
saturate the scene with values greater than 128.  By using the Alpha channel as an 8-
Bit CLUT, the fogging range 0-255 can be mapped to 0.0-1.0. 
 

Using Z Buffer Channel for Depth of Field 
 
Another nice technique that can be achieved with the alpha values in the Draw Buffer 
is a depth of field effect.  The lens flare effect used to be ‘the’ cool graphical effect 
but now depth of field seems to be the next big graphical effect that developers will 
incorporate into their game titles.  This technique gives a convincing illusion that 
objects in the distance appear out of focus.  After performing all drawing operations, 
bilinear shrink the Draw Buffer into the texture buffer.  Depending on how much ‘out 
of focus’ you want to apply to your scene, another down sample might be necessary 
or you could try alpha blending the current image in-place to get a blurrier image.  
After down sampling the Draw Buffer, simply bilinear super sample the off screen 
buffer onto the current Draw Buffer using destination alpha values using 32 pixel 
wide sprites to reduce page breaks. 
 



 

Conclusion 
 
In conclusion, the GS is very flexible and powerful! As described in this article, 
developers can easily use the Z Buffer to create visual and graphical effects for their 
game titles.  If developers have any further questions regarding these techniques, 
please feel free to contact me via the SCEE Developer Support email address. 
 
 
 
 


	Using the Z Buffer for Visual and Special Effects
	Introduction
	Using Z Buffer Channel for Fogging
	Finding a good Z range
	Moving the Green Channel of the ˜˜˜˜˜˜˜Z Buffer
	Why use 8 pixel wide strips?

	Creating the Fog Visual Appearance
	Using Z Buffer Channel for Depth of Field
	Conclusion


